We propose an automated procedure to prove polyhedral abstractions for Petri nets. Polyhedral abstraction is a new type of state-space equivalence based on the use of linear integer constraints. Our approach relies on an encoding into a set of SMT formulas whose satisfaction implies that the equivalence holds. The difficulty, in this context, arises from the fact that we need to handle infinite-state systems. For completeness, we exploit a connection with a class of Petri nets that have Presburger-definable reachability sets. We have implemented our procedure, and we illustrate its use on several examples.