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What's Polyhedral Abstraction?

Introduction

(N1, m1) =g (N2, mp)
» General notion

» Equivalence between reachable markings
(modulo solutions of E)
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What's Polyhedral Abstraction?

Introduction

=F
Ps = p4
E2 ap=p1+p2
a = p3+ pa
ay = ap
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SwimmingPool

Introduction

Entered WaitBag

Undress

Cabins + Dress + Dressed + Undress + WaitBag = 10
E4 Dress + Dressed + Entered + InBath + Out + Undress + WaitBag = 20
Bags 4+ Dress + InBath + Undress = 15
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Petri Nets' Flag (Incorrect Abstraction)

Introduction

P2 = p1
Pa = p3
P7 = Pe

M
lI>

po + ps + 2.p6 + ps = 2
po+p3s+pe+ps=2
p1+ps+ps =1
p1+p3=1
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Petri Nets' Flag (Incorrect Abstraction)

Introduction
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Petri Nets' Flag (Correct Abstraction)

Introduction

P2 = p1
pa=ps+1
p7 = Pe
p3 = ps + pe
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Example of Classes

Introduction

» PR-R (state equation corresponds to the exact state-space)

» Flat nets (Presburger-definable)
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Formalisation

Introduction

m=m < 3ImeN mEEAmAmM
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Definition ( E-abstraction)
(N1, my) Je (N2, my) iff

(A1) initial markings are compatible with E, meaning m1 =g m»

(A2) for all observation sequences o € ¥* such that (Ny, my) = (N, m})
» there is at least one marking m5 of N> such that m} =g m}
» for all markings m5 we have that mj =g mb implies (N2, m2) = (N2, mb)
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Introduction

m=m < 3ImeN mEEAmAmM

Definition ( E-abstraction)
(N1, my) Je (N2, my) iff

(A1) initial markings are compatible with E, meaning m1 =g m»

(A2) for all observation sequences o € ¥* such that (Ny, my) = (N, m})
» there is at least one marking m5 of N> such that m} =g m}
» for all markings m5 we have that mj =g mb implies (N2, m2) = (N2, mb)

E-abstraction equivalence
(N1, m1) =g (N2, mo) iff (N1, m1) Je (N2, m2) and (N2, m2) Je (Ny, my)
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Formalisation

Introduction

my Q
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Formalisation

Introduction

Not a bisimulation!
Not all pairs of reachable markings m}, m) satisfy (N1, m}) =g (N2, m})
10/34



(Un)decidability

Introduction

Theorem
The problem of checking whether a statement
(N1, my) =g (Na, my) is valid is undecidable.
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(Un)decidability

Introduction

Theorem
The problem of checking whether a statement
(N1, my) =g (Na, my) is valid is undecidable.
Proof.
> Take (Nl, m1) =True (/V27 mg), with Py = P
» Both nets must have same reachability sets

» Checking marking equivalence is undecidable [Hack 76]
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Use-cases

Introduction

» Model counting [Berthomieu et al. 2018]
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Use-cases

Introduction

» Is F; reachable in (Ny, mp)?
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Use-cases

Introduction

» Is F; reachable in (Ny, mp)?

Definition (E-transform Formula)
Formula Fa(p2) £ 3p;. E(pl,pg) A F1(p1) is the E-transform of F;

» s the E-transform formula F;, reachable in (Na, my)?

13/34



Challenges and Proposal

Introduction

Challenges:
» Semi-procedure
» Parametric nets (Ny, C1) and (Na, Gy)
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Challenges and Proposal

Introduction

Challenges:
» Semi-procedure
» Parametric nets (Ny, C1) and (Na, Gy)

Proposal:
» More general notion of abstraction
» Presburger encoding of the 7 transitions
» SMT constraints

Is a reduction candidate (Ny, C1) >g (N2, C3) correct?
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Outline

Parametric Polyhedral Abstraction
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Coherent Nets

Parametric Polyhedral Abstraction
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Coherent Nets

Parametric Polyhedral Abstraction

o1 2d or 2 d-b
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Coherent Nets

Parametric Polyhedral Abstraction

Ex=y1+y
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Coherent Nets

Parametric Polyhedral Abstraction

Ex=y1+y

GEy=0

Equivalence rule (concat), (N, C1) =g (N2, G3) with E £ (x = y1 + y2).
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Coherent Nets

Parametric Polyhedral Abstraction

Ex=y1+y

GEy=0

Equivalence rule (concat), (N1, C1) =g (N, ) with E = (x = y1 + o).
Remark: 7 transitions may be irreversible choices
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Coherent Nets

Parametric Polyhedral Abstraction

We introduce some coherency constraints C
» hold on the initial state

» sufficient large subset of reachable markings
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We introduce some coherency constraints C
» hold on the initial state

» sufficient large subset of reachable markings

m % m’: do not finish with a 7 transition

Definition (Coherent Net (N,C))
For all firing sequences m = m’ with m € C we have:
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Coherent Nets

Parametric Polyhedral Abstraction

We introduce some coherency constraints C
» hold on the initial state

» sufficient large subset of reachable markings

m % m’: do not finish with a 7 transition

Definition (Coherent Net (N,C))
For all firing sequences m = m’ with m € C we have:

EIm”EC.m%m”/\m”:%m'

Can reach a coherent marking by firing the “necessary” 7 transitions
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Parametric Abstraction

Parametric Polyhedral Abstraction

m <C1EC2> mo £ my ): GAmMmI=g myAmp ': G

Definition (Parametric E-abstraction)
(N1, Gi) =g (N2, o) iff

(S1) For all markings m; satisfying Cy there exists a marking m2 such that
mi <C1EC2> mo.

.. € .
(S2) For all firing sequences my = mj and all markings mz, we have
m1 =g my implies my =g my.

(S3) For all firing sequences m; == mj and all marking pairs ma, mb, if
my1 {(CLEC2) mp and m} =g m} then we have my =% mb.
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Parametric Abstraction
Parametric Polyhedral Abstraction

m <C1EC2> mo £ my ): GAmMmI=g myAmp ': G
Definition (Parametric E-abstraction)
(N1, 1) < (N2, G) iff

(S1) For all markings m; satisfying Cy there exists a marking m2 such that
mi <C1EC2> mo.

.. € .
(S2) For all firing sequences my = mj and all markings mz, we have
m1 =g my implies my =g my.

(S3) For all firing sequences m; == mj and all marking pairs ma, mb, if
my1 {(CLEC2) mp and m} =g m} then we have my =% mb.

(Nl, Cl) ~E (Nz, Cz) iff (N1, Cl) <E (Nz, Cz) and (Nz7 Cz) <E (Nl, C1).
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Parametric Abstraction Instantiation
Parametric Polyhedral Abstraction

Theorem (Parametric E-abstraction Instantiation)

Assume (N1, C1) =g (Na, G3) is a parametric E-abstraction. Then
for every pair of markings my, ma, my (C1ECy) my implies
(N1, my) Eg (N2, mp).
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Outline

Presburger Arithmetic and Flatness
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Silent State-space

To prove (N, C1) =g (Na, Co) we need to express m = m'’
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Silent State-space

To prove (N, C1) =g (Na, Co) we need to express m = m'’
A Preburger predicate, say 7¢ such that

R (N,C)={m" | m |E3x . C(x)AT(x,x")}
Theorem

Given a parametric E-abstraction equivalence (N1, C1) =g (N, G3),
the silent reachability set R;(N1, C1) is Presburger-definable.
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Flatness

Presburger Arithmetic and Flatness

Theorem (Leroux, 2013)

For every VASS V/, for every Presburger set C;, of configurations,

the reachability set ReachV(C;,) is Presburger if, and only if, V is
flattable from C;,.
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Flatness

Presburger Arithmetic and Flatness

Theorem (Leroux, 2013)

For every VASS V/, for every Presburger set C;, of configurations,
the reachability set ReachV(C;,) is Presburger if, and only if, V is
flattable from C;,.

If candidate correct: we have methods to compute 77

But, checking flatness is undecidable — semi-procedure
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Outline

Core Requirements
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Big Picture

Core Requirements

Lemma 4

Lemma 2
(Core 3)
Proposition 1

Lemma 5

C? (52
Lemma 6

&)
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Core 0 — (Coherent Net)

Core Requirements

(Coherent net) For all firing sequences m = m’ with m € C:

Hm”EC.m%m"/\m”ém/

X
N
|

R(N17 Cl)
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Core 0 — (Coherent Net)

Core Requirements

(Coherent net) For all firing sequences m = m’ with m € C:

Em”EC.m%m"/\m”ém/

m
R(le Cl)

X
N
|
|

vp,p’,a. C(p) A Tc(p,p',a)
= 3p” . C(p") A Tc(p,p”,a) ATE(P”,P)
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Core 1 — (S1)

Core Requirements

(S1) For all markings m; satisfying Ci:
E|m2 .M <C1EC2> my

R(N1,Cy)

R(Ns, Cs)
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Core 1 — (S1)

Core Requirements

(S1) For all markings m; satisfying Ci:
E|m2 .M <C1EC2> my

@ R(Ny,Ch)

E

@ R(N,Cy)

Vx . Gi(x) = 3y . E(x,y) A G(y)
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Core 2 — (S2)

Core Requirements
(S2) For all firing sequences m; => m) and all markings m;:

— A
my =g my — m; =g my
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Core 2 — (S2)

Core Requirements
(S2) For all firing sequences m; => m) and all markings m;:

— A
my =g my — m; =g my

Vp1,p2, Py - E(p1.p2) AT(p1,pl) = E(pl.p2)
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Core 3 — (S3)

Core Requirements
(S3) For all firing sequences m; = m/ and all marking pairs my, mj:

m (GEG)my Ami=g mh) = my = m)
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Core 3 — (S3)

Core Requirements
(S3) For all firing sequences m; = m/ and all marking pairs my, mj:

m (GEG)my Ami=g mh) = my = m)

Vp1, P2, a, P}, Py . (CLEG)(p1, p2) A Te,(p1, P)) A E(p], Pb)
- TC2(P2apé) 28/34



Outline

Toolchain
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Reductron

Toolchain

REDUC%RUN

THE POLYHEDRAL ABSTRACTION PROVER

€ github.com/nicolasAmat/Reductron
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Reductron

Toolchain

REDUC%RUN

THE POLYHEDRAL ABSTRACTION PROVER

€ github.com/nicolasAmat/Reductron

» Compute 7 using the tool FAST
» LIA theory in z3 (use SMT-LIB)

> Allowed us to prove all our reduction rules!
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Outline

Discussion
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Discussion About Automated Proving

» Consolidates reliability (for Tina and SMPT model checkers)
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Discussion About Automated Proving

» Consolidates reliability (for Tina and SMPT model checkers)
» Better understanding of what's behind polyhedral reduction
> A tool to experiment with new reduction rules

» Concrete use-case of the “flattable” notion
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Discussion About Polyhedral Abstraction

» Many nets are flat, actually all bounded models are flat
But it is difficult to find the equation system E

» We show that we can find pieces of flatness inside the
reachable markings of nets

This is the meaning of our polyhedral abstraction

» We can exhibit such equivalences using structural reductions
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Thank you for your attention!
github.com /nicolasAmat/Reductron

Any questions?
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