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No constraints on weights of the arcs

Possibly unbounded

Is F £ (p1 < p2 A po = 2) an invariant?
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ENBL¢,(p) = (po > 3)

ENBLy(p) = (po > 1)
Ay(p,p') 2 (Po=po—1)A(pr=pL+1)A(Ps = p2)
Ay (p,p") £ (Po=po+1)A(PL=p1) Ao =p2+1)

From this, we can construct the transition relation T(p, p’)
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Motivation
Introduction

@ Verification of concurrent systems
(biological, business processes, ...)

@ Verification of software systems
@ Analysis of infinite state systems
@ Timely subject [Blondin et al. '2021] [Dixon et al. '2020]

o Category of the Model Checking Contest
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@ Theoretical interest:

e Equivalent to Vector Addition Systems with States (VASS)
o Difficult (Ackermann-complete) [Czerwinski et al. '2020]
o Decidable [Mayr '1981 — Kosaraju '1982],
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@ Theoretical interest:
e Equivalent to Vector Addition Systems with States (VASS)
o Difficult (Ackermann-complete) [Czerwinski et al. '2020]
o Decidable [Mayr '1981 — Kosaraju '1982],
but still no complete and efficient method

e Many tools:
ITS-TooLs
LoLA

TAPAAL
KREACH
FASTFORWARD

e But efficient methods are missing for (non-coverability)
invariant properties on unbounded nets
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@ Adaptation of PDR for coverability as a testbed for Polyhedral
Reductions [Amat et. al '2021]

e Construction of a benchmark composed of some (small)
complex nets (out of reach of tools)

e Extension to reachability formulas (MCC-like)

@ Certificate of invariance

8/37



Inductive Predicate
Introduction

Definition (Inductive Predicate)

A linear predicate F is inductive if:
e my=F

e for all ms.t. m = F we have m — m' entails m’ = F

N\
® '
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Certificate of Invariance
Introduction

“There exist checkable certificates of non-reachability in the
Presburger arithmetic” [Leroux, 2009]

Definition (Certificate of Invariance)

A predicate R is a Certificate of Invariance (Cl) for F if:
@ R inductive
e R entails F: R(p) A =F(p) unsatisfiable
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@ Also known as /C3: Incremental Construction of Inductive
Clauses for Indubitable Correctness [Bradley, 2006]

@ Symbolic model checking procedure

e Combination of induction, over-approximation, SMT solving
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Basic Presentation
PDR Algorithm

@ Also known as /C3: Incremental Construction of Inductive
Clauses for Indubitable Correctness [Bradley, 2006]

@ Symbolic model checking procedure

e Combination of induction, over-approximation, SMT solving

We define:
e P, the invariant that we want to prove on a net (N, mp)
e [F = =P as the set of feared events (DNF)
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Over Approximation Reachability Sequence
PDR Algorithm

Definition
A sequence of formula Fg, F1, F, ... such that
@ monotonic: F; = Fig
@ contains initial state: Fg = mg
© does not contain feared state Fi(p) A F(p) unsatisfiable
Q@ consecution: Fi(p) A T(p, p’) A —Fii1(p’) unsatisfiable

.

mo
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Stop when:

o Fi = Fj;1: Fjis a certificate of invariance of predicate P

@ or, counterexample
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Proof Obligation

PDR Algorithm

We want to generalize scenario such that m Zs ms and my = F.

@ must be a cube (conjunction),
@ assert its negation to block states

@ in practice, block the Minimal Inductive Clause

F:
Bl
Fy
Fy
myo @)
Q/ —§
-3
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Generalization of a Witness Scenario
Witness Generalization

Assume we have a witness scenario (m1, 0, F), i.e., there exists m]
such that m; = m} and m} |= F (with F a cube of F)

We have three possible generalizations of the trio (my, 0, F)
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(G1) State-based
Witness Generalization
e Monotonicity of Petri nets:

if m = mj then for all my > m; we have my =N my + (mp — my)

@ Monotonic feared states predicate:
if m| |= F then for all m}, > m}| we have m}, = F

e Generalization of (my,0,F): (p > m)

If property F is monotonic and my = (p > m) then (my,0,F) is a
witness scenario.
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Witness Generalization

P1 Po P2
3
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PGCD net, with F £ p; > 2

Scenario: (3,1,0) = (2,2,0) where (2,2,0) = F
e Generalization: pp >3 Ap; > 1
@ Learn clause: pp <3V p1 <1
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(G1) State-based: Limitation

Witness Generalization

But: Only suitable for monotonic predicates!

This known as the coverability problem
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e Displacement A(o)
o A(t) = post(t)
o At.o’) = A(t)

e Hurdle H(o) [Hack, 1976]

o H(t) = pre(t)
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(G2) Transition-based

Witness Generalization

Given a sequence of transitions o we define:

e Displacement A(o)
o A(t) = post(t)
o A(t.o’) = A(t)

e Hurdle H(o) [Hack, 1976]
o H(t) = pre(t)
o H(o1.02) = max(H(o1), H(02) — A(o1))

Hence, m = m’ if and only if:

@ the sequence o is enabled at m: m > H(o)
@ and m" = m+ A(o)

21/37
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(G2) Transition-based
Witness Generalization

@ Generalize sequences instead of states

e Generalization of (my,0,F): (p > H(o) A F(p+ A(0)))

If my = p > H(o) A F(p+ A(o)) then (ma, 0, F) is a witness
scenario.
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(G3) Saturated Transition-based

Witness Generalization

We define the Hurdle of a saturated sequence of transitions o*+1

H(c*™Y) = max (H(c), H(0) — k - A(0)) = H(o) + k - (—A(0))"
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(G3) Saturated Transition-based

Witness Generalization

We define the Hurdle of a saturated sequence of transitions o*+1

H(c*™Y) = max (H(c), H(0) — k - A(0)) = H(o) + k - (—A(0))"
And so, m = ék>m’ if and only if

Q@ m>= H(o)+ k-max(0,-A(0))

Q@ m=m+(k+1) Ao)
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(G3) Saturated Transition-based

Witness Generalization

Assume a, b are mappings of NP s.t. a= H(o) and b= (—A(0))"

[p>a+k-b)
i = e ( AF(p+ (K + 1) - A0) )

implies 3k such that (mo, ak+1, F) is a witness scenario.

.
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(G3) Saturated Transition-based: Concrete Example

Witness Generalization

2 2
t1—><:>—>t2

Parity, with invariant P = (po > 1)

Scenario: (2) 2 (0)
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(G3) Saturated Transition-based: Concrete Example

Witness Generalization

2 2
t1—><:>—>f2

Parity, with invariant P = (po > 1)

Scenario: (2) 2 (0)

o H(t5™) = (2.(k + 1)) and A(t5 ) = (=2.(k + 1))
e Generalization: 3k. ((po > 2.(k+ 1)) A(po —2.(k+1) > 1))
= 3k. (po = 2.(k + 1))
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(G3) Saturated Transition-based: Concrete Example

Witness Generalization

2 2
t1—><:>—>f2

Parity, with invariant P = (po > 1)
t

Scenario: (2) = (0)

o H(t5™) = (2.(k + 1)) and A(t5 ) = (=2.(k + 1))

e Generalization: 3k. ((pp = 2.(k+1))A(po—2.(k+1) > 1))
= dk. (po = 2.(k + 1))

e Learn clause: Vk.(py # 2.(k + 1))
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https://github.com/nicolasAmat/smpt

SMPT: Prototpype Model Checker

Experimental Results

= READMEmd

SM(P/)T - Satisfiability Modulo Petri Net

=)

About

SMPT is an SMT-based model-checker for Petri nets mainly focused on reachability problems that takes advantage of
net reductions.

https://github.com/nicolasAmat/smpt
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Example of Complex Net
Experimental Results

b3 2! Ps
Murphy net, with P £ (p; < 2 A ps > ps)
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Comparison on Expressivness
Experimental Results

ITS-TooLs, LOLA, TAPAAL: k-induction, state equation,
walker, trace abstract refinement, etc.

Instance SMPT ITS-TooLs LoLA TAPAAL
Murphy 0.75* TLE TLE TLE
PGCD 0.11°* 139.08 TLE TLE
CryptoMiner 0.19 * 5.92 TLE 0.18
Parity 0.40 * 3.36 0.01 4.16
Process 83.39 TLE 0.03 0.18

*: use of saturation

TLE: Time Limit Exceeded (1h)
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Comparison on Performance

Experimental Results

Running time (s)
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= SMPT
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Certificate of Invariance

Tool Certification

2 ( : 2
51 [5)

Parity, with invariant P = (pg > 1)

St
[PDR] Certificate of invariance

# (not (p0 < 1))

# (forall (k1) ((p0 < (2 + (k1 * 2))) or ((p0 + (-2 * (k1 + 1))) >= 1)
SR
[PDR] Certificate checking

# UNSAT(I /\ -Proof): True

# UNSAT(R /\ Proof): True

# UNSAT(Proof /\ T /\ -Proof’): True
it 2od Bk Bk SRS S E S Bk B B SS8
FORMULA Parity-Inv TRUE TIME
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Certificate of Invariance
Tool Certification

Po

2 ( : 2
51 [5)

Parity, with invariant P = (pg > 1)

[PDR] Certificate of invariance

# (not (p0 < 1))
# (forall (k1) ((p0 < (2 + (k1 * 2))) or ((p0 + (-2 * (k1 + 1))) >= 1)

C=(po=1)AVk((po <2k+2)V(po =2k +3))
@ equivalent to (pg > 1) A Vk.(po # 2.(k + 1)

@ meaning the marking of pg is odd

32/37



Certificate of Invariance

Tool Certification

2:: 2
(51 [5)

Parity, with invariant P = (po > 1)

[PDR] Certificate checking
# UNSAT(I /\ -Proof): True

# UNSAT(R /\ Proof): True
# UNSAT(Proof /\ T /\ -Proof’): True

Not need to trust our tool: it provide a checkable proof!
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Certificate of Invariance
Tool Certification
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PGCD, with invariant P = (p; < p2)

[PDR] Certificate of invariance
# (not (p1 > p2))
# (forall (k1) ((p0 < (3 + (k1 * 1))) or ((p1 + (1 * (k1 + 1))) <= p2))
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Certificate of Invariance
Tool Certification

P1 Po P2

esujoyure

2 2

PGCD, with invariant P = (p; < p2)

[PDR] Certificate of invariance

# (not (pl > p2))
# (forall (k1) ((p0 < (3 + (k1 * 1))) or ((p1 + (1 * (k1 + 1))) <= p2))

C=(p1 < p2) AVk((po < k+3)V(p2—p1 = k+1))
@ saturation “learned” the invariant pg + p1 = p2 + 2

@ use it to strengthen property P into an inductive invariant

(Property Directed)
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Conclusion and Perspectives
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Conclusion

@ We propose a method that works as well on bounded as on
unbounded nets

@ Behaves well when the invariant is true
@ Works with “genuine” reachability properties

@ Provide certificate of invariance
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Is our method complete?
@ Complete for coverability properties
@ Incomplete without the saturation
@ Open problem

@ If a proof exists, it would be complicated
(cf. Kosaraju's proof)
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Thank you for your attention!

Any questions?
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