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Generalized Petri Nets: QF-LIA Encoding
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Verification of concurrent systems
(biological, business processes, ...)

Verification of software systems

Analysis of infinite state systems

Timely subject [Blondin et al. ’2021] [Dixon et al. ’2020]

Category of the Model Checking Contest
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Related Work
Introduction

Theoretical interest:

Equivalent to Vector Addition Systems with States (VASS)
Difficult (Ackermann-complete) [Czerwiński et al. ’2020]
Decidable [Mayr ’1981 – Kosaraju ’1982],
but still no complete and efficient method

Many tools:

ITS-Tools
LoLA
Tapaal
KReach
FastForward
. . .

But efficient methods are missing for (non-coverability)
invariant properties on unbounded nets
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Decidable [Mayr ’1981 – Kosaraju ’1982],
but still no complete and efficient method

Many tools:

ITS-Tools
LoLA
Tapaal
KReach
FastForward
. . .

But efficient methods are missing for (non-coverability)
invariant properties on unbounded nets

7 / 37



Why Are We Here?
Introduction

Adaptation of PDR for coverability as a testbed for Polyhedral
Reductions [Amat et. al ’2021]

Construction of a benchmark composed of some (small)
complex nets (out of reach of tools)

Extension to reachability formulas (MCC-like)

Certificate of invariance

8 / 37



Why Are We Here?
Introduction

Adaptation of PDR for coverability as a testbed for Polyhedral
Reductions [Amat et. al ’2021]

Construction of a benchmark composed of some (small)
complex nets (out of reach of tools)

Extension to reachability formulas (MCC-like)

Certificate of invariance

8 / 37



Why Are We Here?
Introduction

Adaptation of PDR for coverability as a testbed for Polyhedral
Reductions [Amat et. al ’2021]

Construction of a benchmark composed of some (small)
complex nets (out of reach of tools)

Extension to reachability formulas (MCC-like)

Certificate of invariance

8 / 37



Why Are We Here?
Introduction

Adaptation of PDR for coverability as a testbed for Polyhedral
Reductions [Amat et. al ’2021]

Construction of a benchmark composed of some (small)
complex nets (out of reach of tools)

Extension to reachability formulas (MCC-like)

Certificate of invariance

8 / 37



Inductive Predicate
Introduction

Definition (Inductive Predicate)

A linear predicate F is inductive if:

m0 |= F

for all m s.t. m |= F we have m→ m′ entails m′ |= F
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Certificate of Invariance
Introduction

“There exist checkable certificates of non-reachability in the
Presburger arithmetic” [Leroux, 2009]

Definition (Certificate of Invariance)

A predicate R is a Certificate of Invariance (CI) for F if:

R inductive

R entails F : R(p) ∧ ¬F (p) unsatisfiable
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Basic Presentation
PDR Algorithm

Also known as IC3: Incremental Construction of Inductive
Clauses for Indubitable Correctness [Bradley, 2006]

Symbolic model checking procedure

Combination of induction, over-approximation, SMT solving

We define:

P, the invariant that we want to prove on a net (N,m0)

F = ¬P as the set of feared events (DNF)
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Over Approximation Reachability Sequence
PDR Algorithm

Definition

A sequence of formula F0,F1,F2, ... such that

1 monotonic: Fi ⇒ Fi+1

2 contains initial state: F0 = m0

3 does not contain feared state Fi (p) ∧ F(p) unsatisfiable

4 consecution: Fi (p) ∧ T(p,p′) ∧ ¬Fi+1(p′) unsatisfiable
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Working
PDR Algorithm

Stop when:

Fi = Fi+1: Fi is a certificate of invariance of predicate P
or, counterexample
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Proof Obligation
PDR Algorithm

We want to generalize scenario such that m
σ
=⇒ mf and mf |= F.

must be a cube (conjunction),

assert its negation to block states

in practice, block the Minimal Inductive Clause
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Generalization of a Witness Scenario
Witness Generalization

Assume we have a witness scenario (m1, σ,F ), i.e., there exists m′1
such that m1

σ
=⇒ m′1 and m′1 |= F (with F a cube of F)

We have three possible generalizations of the trio (m1, σ,F )

17 / 37



(G1) State-based
Witness Generalization

Monotonicity of Petri nets:
if m1

σ
=⇒m′1 then for all m2 > m1 we have m2

σ
=⇒m′1 + (m2 −m1)

Monotonic feared states predicate:
if m′1 |= F then for all m′2 > m′1 we have m′2 |= F

Generalization of (m1, σ,F ): (p > m)

Lemma (G1)

If property F is monotonic and m2 |= (p > m) then (m2, σ,F ) is a
witness scenario.
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(G1) State-based: Concrete Example
Witness Generalization
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Scenario: (3, 1, 0)
t0=⇒ (2, 2, 0) where (2, 2, 0) |= F

Generalization: p0 > 3 ∧ p1 > 1

Learn clause: p0 < 3 ∨ p1 < 1
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(G1) State-based: Limitation
Witness Generalization

But: Only suitable for monotonic predicates!

This known as the coverability problem
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(G2) Transition-based
Witness Generalization

Given a sequence of transitions σ we define:

Displacement ∆(σ)

∆(t) = post(t)− pre(t)
∆(t.σ′) = ∆(t) + ∆(σ′)

Hurdle H(σ) [Hack, 1976]

H(t) = pre(t)
H(σ1.σ2) = max(H(σ1),H(σ2)−∆(σ1))

Hence, m
σ
=⇒ m′ if and only if:

1 the sequence σ is enabled at m: m > H(σ)

2 and m′ = m + ∆(σ)
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(G2) Transition-based
Witness Generalization

Generalize sequences instead of states

Generalization of (m1, σ,F ): (p > H(σ) ∧ F (p + ∆(σ)))

Lemma (G2)

If m2 |= p > H(σ) ∧ F (p + ∆(σ)) then (m2, σ,F ) is a witness
scenario.
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(G3) Saturated Transition-based
Witness Generalization

We define the Hurdle of a saturated sequence of transitions σk+1:

H(σk+1) = max (H(σ),H(σ)− k ·∆(σ)) = H(σ) + k · (−∆(σ))+

And so, m
σ

=⇒ σk

=⇒m′ if and only if

1 m > H(σ) + k ·max(0,−∆(σ))

2 m′ = m + (k + 1) ·∆(σ)
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(G3) Saturated Transition-based
Witness Generalization

Lemma (G3)

Assume a, b are mappings of NP s.t. a = H(σ) and b = (−∆(σ))+

m2 |= ∃k.
(

[p > a + k · b)]
∧F (p + (k + 1) ·∆(σ))

)
implies ∃k such that (m2, σ

k+1,F ) is a witness scenario.

24 / 37



(G3) Saturated Transition-based: Concrete Example
Witness Generalization

p0

t1 t2

2 2

Parity, with invariant P = (p0 > 1)

Scenario: (2)
t2=⇒ (0)

H(tk+1
2 ) = (2.(k + 1)) and ∆(tk+1

2 ) = (−2.(k + 1))

Generalization: ∃k . ((p0 > 2.(k + 1))∧ (p0− 2.(k + 1) > 1))
≡ ∃k . (p0 = 2.(k + 1))

Learn clause: ∀k.(p0 6= 2.(k + 1))
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Experimental Results

https://github.com/nicolasAmat/smpt

26 / 37

https://github.com/nicolasAmat/smpt


SMPT: Prototpype Model Checker
Experimental Results

https://github.com/nicolasAmat/smpt
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Example of Complex Net
Experimental Results
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Murphy net, with P , (p1 6 2 ∧ p4 > p5)
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Comparison on Expressivness
Experimental Results

ITS-Tools, LoLA, Tapaal: k-induction, state equation,
walker, trace abstract refinement, etc.

Instance SMPT ITS-Tools LoLA Tapaal

Murphy 0.75 ∗ TLE TLE TLE
PGCD 0.11 ∗ 139.08 TLE TLE
CryptoMiner 0.19 ∗ 5.92 TLE 0.18
Parity 0.40 ∗ 3.36 0.01 4.16
Process 83.39 TLE 0.03 0.18

*: use of saturation
TLE: Time Limit Exceeded (1 h)
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Comparison on Performance
Experimental Results
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Tool Certification
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Certificate of Invariance
Tool Certification

p0

t1 t2

2 2

Parity, with invariant P = (p0 > 1)
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Certificate of Invariance
Tool Certification

p0

t1 t2

2 2

Parity, with invariant P = (p0 > 1)

################################

[PDR] Certificate of invariance

# (not (p0 < 1))

# (forall (k1) ((p0 < (2 + (k1 * 2))) or ((p0 + (-2 * (k1 + 1))) >= 1) or (k1 < 0)))

################################

[PDR] Certificate checking

# UNSAT(I /\ -Proof): True

# UNSAT(R /\ Proof): True

# UNSAT(Proof /\ T /\ -Proof’): True

################################

FORMULA Parity-Inv TRUE TIME
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Certificate of Invariance
Tool Certification

p0

t1 t2

2 2

Parity, with invariant P = (p0 > 1)

[PDR] Certificate of invariance

# (not (p0 < 1))

# (forall (k1) ((p0 < (2 + (k1 * 2))) or ((p0 + (-2 * (k1 + 1))) >= 1) or (k1 < 0)))

C ≡ (p0 > 1) ∧ ∀k .((p0 < 2 k + 2) ∨ (p0 > 2 k + 3))

equivalent to (p0 > 1) ∧ ∀k .(p0 6= 2.(k + 1)

meaning the marking of p0 is odd
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Certificate of Invariance
Tool Certification

p0

t1 t2

2 2

Parity, with invariant P = (p0 > 1)

[PDR] Certificate checking

# UNSAT(I /\ -Proof): True

# UNSAT(R /\ Proof): True

# UNSAT(Proof /\ T /\ -Proof’): True

Not need to trust our tool: it provide a checkable proof!
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Certificate of Invariance
Tool Certification

2

p0

t1

p2

t0

p1

2

3

2

PGCD, with invariant P = (p1 6 p2)

[PDR] Certificate of invariance

# (not (p1 > p2))

# (forall (k1) ((p0 < (3 + (k1 * 1))) or ((p1 + (1 * (k1 + 1))) <= p2))

C ≡ (p1 6 p2) ∧ ∀k .((p0 < k + 3) ∨ (p2 − p1 > k + 1))

saturation “learned” the invariant p0 + p1 = p2 + 2

use it to strengthen property P into an inductive invariant
(Property Directed)
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Conclusion and Perspectives
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Conclusion

We propose a method that works as well on bounded as on
unbounded nets

Behaves well when the invariant is true

Works with “genuine” reachability properties

Provide certificate of invariance
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Perspectives

Is our method complete?

Complete for coverability properties

Incomplete without the saturation

Open problem

If a proof exists, it would be complicated
(cf. Kosaraju’s proof)
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Thank you for your attention!

Any questions?
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