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The Quest for Correctness
Introduction

Ariane 5, 1996

“It is fair to state, than in the digital era
correct systems for information processing
are more valuable than gold.”

— H. Barendregt, The quest for correctness.

seL4, CompCert,
Protocole de cohérence de cache “Futurebus+”,
Algorithmes distribués randomisés.

— H. Garavel, Three Decades of Success Stories in

Formal Methods.
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Mathematical model: Petri net
Introduction
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A Petri net example; Christian Stahl.

“Decomposing Petri net state spaces.” In 18th German Workshop on
Algorithms and Tools for Petri Nets. 2011.
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Motivations
Introduction

Context: Model Checking of “General” Petri nets

Not only 1-safe nets
Inhibitor and Read arcs

Goal: Use of net reductions to overcome state-space
explosion

Great results for model counting [Berthomieu, 2019]
SMT-based methods
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Property Verification
Introduction

A property P is correct if for all reachable marking m in
RN(m0), m satisfies P, denoted m |= P

proving P correct is equivalent to checking �P in LTL or
AGP in CTL

Formula with variables in ~x that is only “satisfiable at marking
m”: m(~x) ≡ ∧i∈1..n(xi = m(pi ))

Check satisfiability of ¬P(~x) ∧m(~x)
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Some Examples of Interesting Properties
Introduction

PlaceReach: REACH(p) ≡ m(p) ≥ 1

QuasiLiveness: LIVE(t) ≡ ∧
p∈•t COVER(p,pre(t, p))

ReachabilityDeadlock: DEAD ≡ ∧
t∈T
¬LIVE(t)

ConcurrentPlaces: p1‖p2 ≡ REACH(p1) ∧ REACH(p2)

OneSafe, StableMarking, . . .
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Net Reductions
Introduction
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Net reduction example, with
equation E : a = x + y Relation between state-spaces
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Polyhedral Model Checking
Introduction

State-space abstraction by a “polyhedral approach”
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1 Formalization of Net Reductions

2 Model Checking Algorithms

3 SMPT: Another Model-Checker

4 Application: Concurrent Places Problem
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Formalization of Net Reductions
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Reduction Rule Example: Concatenate (CONCAT)
Formalization of Net Reductions

N1 N2

Ky1

τ

y2

a b

c

K x

a b

c

Equation: x = y1 + y2
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Structure of the System of Equations E
Formalization of Net Reductions

A marking m can be associated to system of equations m(~x)
defined as, x1 = m(p1), . . . , xn = m(pn) where
P = {p1, . . . , pn}

E is satisfiable for m if the system E ,m has solutions

Given two markings m1,m2 from two nets N1,N2, we say that
m1 and m2 are compatible, denoted (m1 ]m2), when
m1(p) = m2(p) for all p in P1 ∩ P2 (or equivalently m1,m2 is
satisfiable)
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E -Abstraction Equivalence
Formalization of Net Reductions

E -abstraction: (N1,m1) wE (N2,m2)

(A1) system E is solvable for N1,N2 and the initial markings are
compatible with E , meaning m1 ]m2 |= E

(A2) for all firing sequence σ1 such that (N1,m1)
σ1=⇒ (N1,m

′
1) then

for all marking m′
2 over P2 such that m′

1 ]m′
2 |= E we must

have a firing sequence σ2 in N2 with the same observables,
meaning: that (N2,m2)

σ2=⇒ (N2,m
′
2) and l1(σ1) = l2(σ2).

E -abstraction equivalence: (N1,m1) BE (N2,m2)

Iff (N1,m1) wE (N2,m2) and (N2,m2) wE (N1,m1)
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Basic Property of E -Equivalence
Formalization of Net Reductions

Bounded Model-Checking: If (N1,m1) BE (N2,m2), then
for all marking m′

1 in RN1(m1) there exists m′
2 in RN2(m2)

such that m′
1 ]m′

2 |= E .

Invariance Checking: If (N1,m2) BE (N2,m2), then for all
pair of markings m′

1,m
′
2 over N1,N2 such that m′

1 ]m′
2 |= E

and m′
2 ∈ RN2(m2) it is the case that m′

1 ∈ RN1(m1).
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Composition Laws
Formalization of Net Reductions

Axioms: Reduction Rules (CONCAT, etc.)

(COMP) Composability
If (N1,m1) BE (N2,m2), then
(N1,m1)‖(N3,m,3 ) BE (N2,m2)‖(N3,m3)

(TRANS) Transitivity
If (N1,m1) BE (N2,m2) and (N2,m2) BE ′ (N3,m3), then
(N1,m1) BE ,E ′ (N3,m3).

(RENAME) Relabeling
If (N1,m1) BE (N2,m2), then (N1[a/b],m1) BE (N2[a/b],m2)
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Net Reduction Example Step by Step
Formalization of Net Reductions
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Christian Stahl. “Decomposing Petri net state spaces.” In 18th German
Workshop on Algorithms and Tools for Petri Nets. 2011.
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Net Reduction Example (Step 0)
Formalization of Net Reductions
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Initial net, S1, with a pattern for rule (CONCAT) emphasized in blue.

E0 = ∅ (1)
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Net Reduction Example (Step 1)
Formalization of Net Reductions

p0
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Net S2, with the result of applying rule (CONCAT) emphasized in blue.

E1 =
{

a1 = p1 + p2 (2)

We have: S1 BE1 S2.
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Net Reduction Example (Step 2)
Formalization of Net Reductions

p0

t0

a1

t3

a3

a4

t6

p9

a2

Net S3, with the result of applying rule (CONCAT) emphasized in blue.

E2 =


a2 = p3 + p4,
a3 = p5 + p6,
a4 = p7 + p8

(3)

We have: S2 BE2 S3.
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Net Reduction Example
Formalization of Net Reductions
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Net S3

By transitivity, S1 BE1,E2 S3
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Model Checking Algorithms
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SMT-based Algorithms
Model Checking Algorithms

Bounded Model Checking (BMC ): counter-examples

Property Directed Reachability (IC3): invariant proof
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Bounded Model Checking (BMC)
Model Checking Algorithms

[Biere et al., 1999]

Find counter-example violating a property

Unroll Transitions

SAT based

BMC method representation
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Bounded Model Checking (BMC)
Model Checking Algorithms

Algorithm adaptation (SMT-based)

ENBLDt(~x) ≡ ∧{(xi ≥ k) | k = pre(t, pi ) > 0}

∆t(~x , ~x
′) ≡ ∧{(x ′i = xi + δi ) | δi =

post(t, pi )− pre(t, pi ), 1 ≤ i ≤ n}

T (~x , ~x ′) ≡ ALLEQ(~x , ~x ′) ∨∨t∈T (ENBLDt(~x) ∧∆t(~x , ~x
′))

Lemma: m(~x) ∧ T (~x , ~x ′) ∧m′(~x ′): m′ is at most one-step from m
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Bounded Model Checking (BMC)
Model Checking Algorithms

 φ0(N,m0)(~x0) ≡ m0(~x0)

φi+1(N,m0)(~xi+1) ≡ φi (N,m0)(~xi ) ∧ T (~xi , ~xi+1)

For k ≥ 0, check φk(~xk) ∧ R(~xk) until SAT

Petri net

property

φk ∧R

SAT

UNSAT

z3

k := k +1

CEX

BMC Algorithm
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Bounded Model Checking (BMC) + Reductions
Model Checking Algorithms

We can find counter-examples to R on N1 by finding
counter-examples to E ∧ R on N2.
(usually k and |T | are much smaller).

φri (N1,m1)(~x) ≡ φi (N2,m2)(~yi ) ∧ E (~x , ~yi ) ∧ R(~x)
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Property Directed Reachability (IC3)
Model Checking Algorithms

[Bradley, 2011]

Induction, Over-approximation & SAT Solving
Unroll at most one transition
Generate clauses that are inductive

IC3 method representation
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SMPT: Another Model-Checker
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Tool Overview
SMPT: Another Model-Checker

Available on GitHub under GPLv3 license
github.com/nicolasAmat/SMPT

Python language (≈ 3,000 LoC)

Z3 (SMT-LIB v2)

Input Petri nets at the .net format

Run the tool: ./smpt.py --deadlock <.net>

Take advantage of net reductions
./smpt.py --deadlock <.net> --reduced <.net>
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Features
SMPT: Another Model-Checker

Property verification

Deadlock --deadlock

Quasi-liveness --liveness <t>

(Place) Reachability --reachability <p>

Concurrent Places: --concurrent-places <p1>,...,<pk>

Debug

Verbose: --verbose

Print SMT-LIB input/output --debug
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Place Reachability
Experimental Results

We check if a particular place can be marked in the model.

Model # states Result Time TReduced

AirplaneLD–10 4.3 104 CEX 9.17s 0.16s
AirplaneLD–20 3.1 105 CEX 50.26s 0.16s
AirplaneLD–∞ ∞ CEX n.a. 0.16s

IBM319 (merge. . . ) 2.4 103 CEX > 200s 0.14s

IBM319 (callTo. . . ) 2.4 103 PROOF > 200s 12.02s
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Place Reachability
Experimental Results

We check if places P1 and P2 can be marked together in model
AirplaneLD (we know it is not possible)1.

Model # states Result Time TReduced

AirplaneLD–10 4.3 104 PROOF 1.50s 0.26s
AirplaneLD–20 3.1 105 PROOF 2.51s 0.26s
AirplaneLD–4000 2.1 1012 PROOF 1 680s 0.26s2

1time to generate the state space of AirplaneLD-4000 with ITS is > 2 500s.
2time to reduce: 67.79s
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Application: Concurrent Places Problem
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Problem Definition
Application: Concurrent Places Problem

Useful for the decomposition into Nested-Unit Petri Nets
(NUPNs)

Two places p1 and p2 are concurrent, denotes as p1‖p2 iff
there exists a reachable marking m in RN(m0) such that
m(p1) > 0 and m(p2) > 0.
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Algorithm
Application: Concurrent Places Problem

A new method that take advantage of net reductions:

(Step 1) Compute the concurrency relation of the reduced net N2

(Step 2) Change of Basis, compute the concurrency relation of the
initial net N1 from the system of equations E and the
concurrency relation of the reduced net N2
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Concurrency Relation Construction
Application: Concurrent Places Problem

Concurrency relation: undirected graph (P,R), where vertices
are places and there is an edge (p, q) ∈ R when p‖q

Output: Concurrency relation C
C ←− {};
m←− initial marking m0;
while C ←− C ∪ stepper(m, C);
do

parallel
begin

if IC3 proves that we found all concurrent places
then return C;

begin
if BMC finds a counter-example m′ with new

concurrent places then
m←− m′;
continue;
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Change of Basis using Reduction Equations
Application: Concurrent Places Problem

# R |- P3 = P2
# A |- a1 = Pout1 + Pm1
# A |- a2 = Pback1 + a1
# A |- a3 = Pout2 + Pm2
# A |- a4 = Pback2 + a3
# A |- a5 = Pout3 + Pm3
# A |- a6 = Pback3 + a5
# A |- a7 = Pout4 + Pm4
# A |- a8 = Pback4 + a7
# A |- a9 = a8 + P4
# R |- a9 = 5
# R |- a6 = a4
# A |- a10 = a4 + P2
# R |- a10 = 5
# A |- a11 = a2 + P1
# R |- a11 = 5

Output of tool reduce on the Kanban instance for N = 5
(#states: 2 546 400 – 16 places, 16 transitions, 40 arcs)
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Change of Basis using Reduction Equations
Application: Concurrent Places Problem

# R |- P3 = P2

# A |- a1 = Pout1 + Pm1
# A |- a2 = Pback1 + a1

# A |- a3 = Pout2 + Pm2
# A |- a4 = Pback2 + a3
# A |- a5 = Pout3 + Pm3
# A |- a6 = Pback3 + a5
# A |- a7 = Pout4 + Pm4
# A |- a8 = Pback4 + a7
# A |- a9 = a8 + P4
# R |- a9 = 5
# R |- a6 = a4
# A |- a10 = a4 + P2
# R |- a10 = 5

# A |- a11 = a2 + P1
# R |- a11 = 5

# R |- a11 = 5

# A |- a11 = a2 + P1

# A |- a2 = Pback1 + a1

# A |- a1 = Pout1 + Pm1

Output of tool reduce on the Kanban instance for N = 5
(#states: 2,546,400 – 16 places, 16 transitions, 40 arcs)
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Conclusion

The approach used in SMPT is promising

Contributions for SMT-based model-checking algorithms

New equivalence relation: E-abstraction equivalence

New method for the Concurrent Places Problem
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Thank you for your attention!
Any questions?
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Bounded Model Checking (BMC)
Model Checking Algorithms

Assertion stack
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Bounded Model Checking (BMC) + Reductions
Model Checking Algorithms

Assertion stack with reductions
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Property Directed Reachability (IC3)
Model Checking Algorithms

Over-Approximated Reachability Sequence (OARS) of formulas
F0, . . . ,Fk+1 such that:

(F0 = I ⊆ F1 ⊆ · · · ⊆ Fk+1 = P)

For all i ∈ 0 . . . k + 1. Fi (~x) ∧ T (~x , ~x ′)⇒ Fi+1(~x ′)

Each Fi describes a set of states that:

1 Includes the states s less than i steps from I ,

2 Contains only states s which are more than k − i + 1 steps
from R.

Proved when Fi = Fi+1.
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Perspectives

Continue to work on SMT-based algorithms

Add states equations
Add invariants
Add BDDs

Explore new reduction rules

Theorem Prover
Specific rules

Model Counting

Convex analysis [Barvinok]
Combinatorial approach

Participation in Reachability category of the Model Checking
Contest.
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Prevalence of Reductions over the MCC Instances
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