
A Polyhedral Framework for
Reachability Problems in Petri Nets

Un cadre polyédrique pour les problèmes d’accessibilité dans les réseaux de Petri

Nicolas Amat

François Vernadat, Didier Le Botlan, Silvano Dal Zilio

December 4, 2023

1/73

General context

▶ Verification of concurrent systems

▶ Model checking [Emerson and Clarke, 80] [Queille and Sifakis, 82]

Does an abstract model satisfy a formal specification?

2/73

The SmallOperatingSystem example

startLoading

endLoading

startFirst

endUnload

TransferToDisk

startUnload

startNext

TaskSuspended

ExecutingTask

freeMemory

suspend

State space ≈ 1017

2/73

The SmallOperatingSystem example

8192

FreeMemSegment

8192

TaskOnDisk

4096

DiskControllerUnit

8192

CPUUnit

LoadingMem

TaskReady

startLoading

endLoading

startFirst

endUnload

TransferToDisk

startUnload

startNext

TaskSuspended

ExecutingTask

freeMemory

suspend

State space ≈ 1017

2/73

The SmallOperatingSystem example

8192

FreeMemSegment

8192

TaskOnDisk

4096

DiskControllerUnit

8192

CPUUnit

LoadingMem

TaskReady

startLoading

endLoading

startFirst

endUnload

TransferToDisk

startUnload

startNext

TaskSuspended

ExecutingTask

freeMemory

suspend

State space ≈ 1017

2/73

The SmallOperatingSystem example

8192

FreeMemSegment

8192

TaskOnDisk

4096

DiskControllerUnit

8192

CPUUnit

LoadingMem

TaskReady

startLoading

endLoading

startFirst

endUnload

TransferToDisk

startUnload

startNext

TaskSuspended

ExecutingTask

freeMemory

suspend

State space ≈ 1017

2/73

The SmallOperatingSystem example

8192

FreeMemSegment

8192

TaskOnDisk

4096

DiskControllerUnit

8192

CPUUnit

LoadingMem

TaskReady

startLoading

endLoading

startFirst

endUnload

TransferToDisk

startUnload

startNext

TaskSuspended

ExecutingTask

freeMemory

suspend

State space ≈ 1017

2/73

The SmallOperatingSystem example

8192

FreeMemSegment

8192

TaskOnDisk

4096

DiskControllerUnit

8192

CPUUnit

LoadingMem

TaskReady

startLoading

endLoading

startFirst

endUnload

TransferToDisk

startUnload

startNext

TaskSuspended

ExecutingTask

freeMemory

suspend

Is ”ExecutingTask > TaskOnDisk” reachable from the initial marking?

State space ≈ 1017

2/73

The SmallOperatingSystem example

8192

FreeMemSegment

8192

TaskOnDisk

4096

DiskControllerUnit

8192

CPUUnit

LoadingMem

TaskReady

startLoading

endLoading

startFirst

endUnload

TransferToDisk

startUnload

startNext

TaskSuspended

ExecutingTask

freeMemory

suspend

State space ≈ 1017

3/73

Techniques

▶ State-space construction
▶ Decision Diagrams
▶ Partial Order Reductions, symmetries, etc.
▶ Not adapted for reachability problems and cannot handle unbounded nets

▶ Portfolio of methods

▶ SMT-based model checking (thanks to the progress of the solvers)
▶ Counter-examples: BMC
▶ Invariants: k-induction, CEGAR, PDR

▶ Optimizations
▶ Structural reductions, slicing, etc.

Our approach is complementary!

3/73

Techniques

▶ State-space construction
▶ Decision Diagrams
▶ Partial Order Reductions, symmetries, etc.
▶ Not adapted for reachability problems and cannot handle unbounded nets

▶ Portfolio of methods

▶ SMT-based model checking (thanks to the progress of the solvers)
▶ Counter-examples: BMC
▶ Invariants: k-induction, CEGAR, PDR

▶ Optimizations
▶ Structural reductions, slicing, etc.

Our approach is complementary!

3/73

Techniques

▶ State-space construction
▶ Decision Diagrams
▶ Partial Order Reductions, symmetries, etc.
▶ Not adapted for reachability problems and cannot handle unbounded nets

▶ Portfolio of methods

▶ SMT-based model checking (thanks to the progress of the solvers)
▶ Counter-examples: BMC
▶ Invariants: k-induction, CEGAR, PDR

▶ Optimizations
▶ Structural reductions, slicing, etc.

Our approach is complementary!

3/73

Techniques

▶ State-space construction
▶ Decision Diagrams
▶ Partial Order Reductions, symmetries, etc.
▶ Not adapted for reachability problems and cannot handle unbounded nets

▶ Portfolio of methods

▶ SMT-based model checking (thanks to the progress of the solvers)
▶ Counter-examples: BMC
▶ Invariants: k-induction, CEGAR, PDR

▶ Optimizations
▶ Structural reductions, slicing, etc.

Our approach is complementary!

4/73

A polyhedral framework for reachability problems in Petri nets

5/73

Petri nets

A strength of Petri net theory is the ability to reuse results from linear algebra, and
linear programming techniques, to reason on it:

▶ Potentially reachable markings, aka the State Equation

m = I .σ +m0

▶ Place invariants
σT .I = 0

▶ . . .

5/73

Petri nets

A strength of Petri net theory is the ability to reuse results from linear algebra, and
linear programming techniques, to reason on it:

▶ Potentially reachable markings, aka the State Equation

m = I .σ +m0

▶ Place invariants
σT .I = 0

▶ . . .

5/73

Petri nets

A strength of Petri net theory is the ability to reuse results from linear algebra, and
linear programming techniques, to reason on it:

▶ Potentially reachable markings, aka the State Equation

m = I .σ +m0

▶ Place invariants
σT .I = 0

▶ . . .

6/73

Petri nets

Some transition t enabled at m when m |= ENBLt(p):

ENBLt(p) ≜
∧

i∈1..n
(pi ⩾ Pre(t, pi))

We have m → m′ if and only if m,m′ |= T(p,p′):

T(p,p′) ≜
∨

t∈T ENBLt(p) ∧∆t(p,p′)

where the token displacement is defined as:

∆t(p,p′) ≜
∧

i∈1..n (p
′
i = pi + Post(t)(pi)− Pre(t)(pi))

In general the relation m →∗ m′ cannot be encoded in the Presburger arithmetic

Same formalism for semantics and properties

6/73

Petri nets

Some transition t enabled at m when m |= ENBLt(p):

ENBLt(p) ≜
∧

i∈1..n
(pi ⩾ Pre(t, pi))

We have m → m′ if and only if m,m′ |= T(p,p′):

T(p,p′) ≜
∨

t∈T ENBLt(p) ∧∆t(p,p′)

where the token displacement is defined as:

∆t(p,p′) ≜
∧

i∈1..n (p
′
i = pi + Post(t)(pi)− Pre(t)(pi))

In general the relation m →∗ m′ cannot be encoded in the Presburger arithmetic

Same formalism for semantics and properties

6/73

Petri nets

Some transition t enabled at m when m |= ENBLt(p):

ENBLt(p) ≜
∧

i∈1..n
(pi ⩾ Pre(t, pi))

We have m → m′ if and only if m,m′ |= T(p,p′):

T(p,p′) ≜
∨

t∈T ENBLt(p) ∧∆t(p,p′)

where the token displacement is defined as:

∆t(p,p′) ≜
∧

i∈1..n (p
′
i = pi + Post(t)(pi)− Pre(t)(pi))

In general the relation m →∗ m′ cannot be encoded in the Presburger arithmetic

Same formalism for semantics and properties

7/73

A polyhedral framework for reachability problems in Petri nets

8/73

Reachability properties verification

▶ F reachable if and only if ∃m ∈ R(N,m0) such that m |= F

▶ F invariant if and only if ∀m ∈ R(N,m0) we have m |= F

EFF ≡ ¬ (AG¬F)
⊤ ⊥

EFF Witness Non-reachable
AGF Invariant Counter-example

8/73

Reachability properties verification

▶ F reachable if and only if ∃m ∈ R(N,m0) such that m |= F

▶ F invariant if and only if ∀m ∈ R(N,m0) we have m |= F

EFF ≡ ¬ (AG¬F)
⊤ ⊥

EFF Witness Non-reachable
AGF Invariant Counter-example

8/73

Reachability properties verification

▶ F reachable if and only if ∃m ∈ R(N,m0) such that m |= F

▶ F invariant if and only if ∀m ∈ R(N,m0) we have m |= F

EFF ≡ ¬ (AG¬F)
⊤ ⊥

EFF Witness Non-reachable
AGF Invariant Counter-example

9/73

Some properties of interest

▶ Coverability: COVER(p, k) ≡ m(p) ≥ k

▶ Reachability: REACH(p, k) ≡ m(p) = k

▶ Quasi-liveness: QLIVE(t) ≡ ∧
p∈•t COVER(p,pre(t, p))

▶ Deadlock: DEAD ≡ ∧
t∈T

¬QLIVE(t)

10/73

Reachability problems

▶ Decidable [Mayr, 1981] [Kosaraju, 1982] [Lambert, 1992]
... but still no complete and efficient method.

▶ Difficult (Ackermann-complete) [Czerwiński et al., 2022] [Leroux, 2022]

▶ Many tools
▶ ITS-Tools
▶ LoLA
▶ TAPAAL
▶ KReach
▶ FastForward
▶ . . .

10/73

Reachability problems

▶ Decidable [Mayr, 1981] [Kosaraju, 1982] [Lambert, 1992]
... but still no complete and efficient method.

▶ Difficult (Ackermann-complete) [Czerwiński et al., 2022] [Leroux, 2022]

▶ Many tools
▶ ITS-Tools
▶ LoLA
▶ TAPAAL
▶ KReach
▶ FastForward
▶ . . .

10/73

Reachability problems

▶ Decidable [Mayr, 1981] [Kosaraju, 1982] [Lambert, 1992]
... but still no complete and efficient method.

▶ Difficult (Ackermann-complete) [Czerwiński et al., 2022] [Leroux, 2022]

▶ Many tools
▶ ITS-Tools
▶ LoLA
▶ TAPAAL
▶ KReach
▶ FastForward
▶ . . .

11/73

A polyhedral framework for reachability problems in Petri nets

12/73

Net reductions [Berthelot, 76]

A reduction is a net transformation which reduces its size such that (for a given set of
properties) the reduced net is equivalent to the initial one.

(N,m0) ≡ (N ′,m′
0)

A reduction is characterized by:

▶ A Presburger predicate, E, of linear constraints between places.

▶ (Graph) transformation

▶ Application of conditions

▶ The preserved properties: boundedness; deadlock; quasi-liveness; reachability; . . .

12/73

Polyhedral reductions

A polyhedral reduction is a net transformation which reduces its size such that we can
reconstruct the state space of the initial net from the reduced one.

(N,m0) ≡E (N ′,m′
0)

A polyhedral reduction is characterized by:

▶ A Presburger predicate, E, of linear constraints between places.

▶ (Graph) transformation

▶ Application of conditions

▶ The preserved properties: boundedness; deadlock; quasi-liveness; reachability; . . .

13/73

SmallOperatingSystem

8192

p0

p2

t2

p5

t4

t1

p3

t3

t6

t5 p78192

p6

p8
t7

t0 8192

p1

4096

p4

≡E t2

p2

a2

t3

t1t0

t4

8192

p0

p3

4096

p4

E ≜ ∃a1.


p1 = p4 + 4096
p6 = p0 + p2 + p3 + p5 + p7
a1 = p7 + p8
a2 = a1 + p6

14/73

AirplaneLD-PT-0050

≡E

AirplaneLD-PT-4000: 30 000 variables and literals

14/73

AirplaneLD-PT-0050

≡E

E contains about 400 variables and literals

14/73

AirplaneLD-PT-0050

≡E

AirplaneLD-PT-4000: 30 000 variables and literals

15/73

SwimmingPool

WaitBag Undress InBath Dress Dressed

15

Bags

10

Cabins

20

OutEntered

E ≜


Cabins + Dress + Dressed + Undress +WaitBag = 10
Dress + Dressed + Entered + InBath + Out + Undress +WaitBag = 20
Bags + Dress + InBath + Undress = 15

16/73

Benchmark (Model Checking Contest)

The Model Checking Contest is important in my work:

▶ A great source of model instances! ≈ 1 400 nets

▶ Also a source of reachability formulas ≈ 50 000 queries

▶ Software development: from prototypes to tools that can be reused by others

16/73

Benchmark (Model Checking Contest)

The Model Checking Contest is important in my work:

▶ A great source of model instances! ≈ 1 400 nets

▶ Also a source of reachability formulas ≈ 50 000 queries

▶ Software development: from prototypes to tools that can be reused by others

17/73

Outline

1. Two new definitions

2. Two contributions

3. Epilogue

18/73

Outline

Token Flow Graphs

Project and Conquer

Proving Polyhedral Equivalences

Computing Invariance Certificates

Concurrency Relation Computation

Polyhedral Reduction
SM

PT

Ko
ng

O
ct
an
t

Re
du
ct
ro
n

18/73

Outline

Token Flow Graphs

Project and Conquer

Proving Polyhedral Equivalences

Computing Invariance Certificates

Concurrency Relation Computation

Polyhedral Reduction
SM

PT

Ko
ng

O
ct
an
t

Re
du
ct
ro
n

18/73

Outline

Token Flow Graphs

Project and Conquer

Proving Polyhedral Equivalences

Computing Invariance Certificates

Concurrency Relation Computation

Polyhedral Reduction
SM

PT

Ko
ng

O
ct
an
t

Re
du
ct
ro
n

19/73

Big picture
Polyhedral Reduction

(N1,m1)

3

x

y

(N2,m2) 3

a

7→

Net reduction example, with E : a = x + y

Relation between state-spaces

20/73

Markings equivalence up-to E
Polyhedral Reduction

▶ Two markings m1 and m2 are compatible:

m1(p) = m2(p) for all p in P1 ∩ P2

▶ A marking m can be associated to system of equations m defined as:

p1 = m(p1) ∧ · · · ∧ pk = m(pk) where P = {p1, . . . , pk}

▶ We denote m1 ≡E m2 when:

E ∧m1 ∧m2 is satisfiable

20/73

Markings equivalence up-to E
Polyhedral Reduction

▶ Two markings m1 and m2 are compatible:

m1(p) = m2(p) for all p in P1 ∩ P2

▶ A marking m can be associated to system of equations m defined as:

p1 = m(p1) ∧ · · · ∧ pk = m(pk) where P = {p1, . . . , pk}

▶ We denote m1 ≡E m2 when:

E ∧m1 ∧m2 is satisfiable

20/73

Markings equivalence up-to E
Polyhedral Reduction

▶ Two markings m1 and m2 are compatible:

m1(p) = m2(p) for all p in P1 ∩ P2

▶ A marking m can be associated to system of equations m defined as:

p1 = m(p1) ∧ · · · ∧ pk = m(pk) where P = {p1, . . . , pk}

▶ We denote m1 ≡E m2 when:

E ∧m1 ∧m2 is satisfiable

21/73

Polyhedral equivalence
Polyhedral Reduction

Definition (Relaxed E -equivalence)

(N1,m1)≡E (N2,m2) if and only if

(A1) initial markings are realated up-to E : m1≡E m2;

(A2a) for all markings m in R(N1,m1) or R(N2,m2): E ∧m is satisfiable;

(A2b) assume m′
1,m

′
2 are markings of N1,N2 related up-to E , such that

m′
1≡E m′

2, then m′
1 is reachable iff m′

2 is reachable.

We have two variant definitions:

▶ Composition (relies on observation sequences)

▶ Automated proving

21/73

Polyhedral equivalence
Polyhedral Reduction

Definition (Relaxed E -equivalence)

(N1,m1)≡E (N2,m2) if and only if

(A1) initial markings are realated up-to E : m1≡E m2;

(A2a) for all markings m in R(N1,m1) or R(N2,m2): E ∧m is satisfiable;

(A2b) assume m′
1,m

′
2 are markings of N1,N2 related up-to E , such that

m′
1≡E m′

2, then m′
1 is reachable iff m′

2 is reachable.

We have two variant definitions:

▶ Composition (relies on observation sequences)

▶ Automated proving

22/73

Key results: reachability checking
Polyhedral Reduction

Lemma (Reachability checking)

For all pairs of markings m′
1,m

′
2 of N1,N2 such that m′

1≡E m′
2:

if m′
2 ∈ R(N2,m2) then m′

1 ∈ R(N1,m1).

m1 m′
1

m2 m′
2

m1 ≡E m2
∀m′

1 . m′
1 ≡E m′

2

23/73

Key results: invariance checking
Polyhedral Reduction

Lemma (Invariance checking)

For all m′
1 in R(N1,m1) there is m′

2 in R(N2,m2) such that m′
1≡E m′

2.

m1 m′
1

m2 m′
2

m1 ≡E m2 ∃m′
2 . m′

1 ≡E m′
2

24/73

Deriving polyhedral reductions – Step 1
Polyhedral Reduction

8192

p0

p2

p5

t4

p3

t6

t5 p78192

p6

p8
t7

8192

p1

4096

p4

t0 t1

t2 t3

≡E1

8192

p0

p2

t2

p5

t4

4096

p4

t1

p3

t3

t6

t5 p78192

p6

p8
t7

t0

E1 ≜ p1 = p4 + 4096

24/73

Deriving polyhedral reductions – Step 1
Polyhedral Reduction

8192

p0

p2

p5

t4

p3

t6

t5 p78192

p6

p8
t7

8192

p1

4096

p4

t0 t1

t2 t3

≡E1

8192

p0

p2

t2

p5

t4

4096

p4

t1

p3

t3

t6

t5 p78192

p6

p8
t7

t0

Rule [red]: place p1 is redundant to p4

E1 ≜ p1 = p4 + 4096

24/73

Deriving polyhedral reductions – Step 1
Polyhedral Reduction

8192

p0

p2

p5

t4

p3

t6

t5 p78192

p6

p8
t7

8192

p1

4096

p4

t0 t1

t2 t3

≡E1

8192

p0

p2

t2

p5

t4

4096

p4

t1

p3

t3

t6

t5 p78192

p6

p8
t7

t0

Rule [red]: place p1 is redundant to p4

E1 ≜ p1 = p4 + 4096

24/73

Deriving polyhedral reductions – Step 1
Polyhedral Reduction

8192

p0

p2

p5

t4

p3

t6

t5 p78192

p6

p8
t7

8192

p1

4096

p4

t0 t1

t2 t3 ≡E1

8192

p0

p2

t2

p5

t4

4096

p4

t1

p3

t3

t6

t5 p78192

p6

p8
t7

t0

E1 ≜ p1 = p4 + 4096

25/73

Deriving polyhedral reductions – Step 2
Polyhedral Reduction

t2

t4

4096

p4

t1

t3

t6

t5

p8
t7

t08192

p0

8192

p6

p2 p3

p5

p7

≡E2

8192

p0

p2

t2

p5

t4

4096

p4

t1

p3

t3

t6

t5 p7

p8
t7

t0

E2 ≜ p6 = p0 + p2 + p3 + p5 + p7

25/73

Deriving polyhedral reductions – Step 2
Polyhedral Reduction

t2

t4

4096

p4

t1

t3

t6

t5

p8
t7

t08192

p0

8192

p6

p2 p3

p5

p7

≡E2

8192

p0

p2

t2

p5

t4

4096

p4

t1

p3

t3

t6

t5 p7

p8
t7

t0

Place invariant: p6 = p0 + p2 + p3 + p5 + p7

E2 ≜ p6 = p0 + p2 + p3 + p5 + p7

25/73

Deriving polyhedral reductions – Step 2
Polyhedral Reduction

t2

t4

4096

p4

t1

t3

t6

t5

p8
t7

t08192

p0

8192

p6

p2 p3

p5

p7

≡E2

8192

p0

p2

t2

p5

t4

4096

p4

t1

p3

t3

t6

t5 p7

p8
t7

t0

Place invariant: p6 = p0 + p2 + p3 + p5 + p7

E2 ≜ p6 = p0 + p2 + p3 + p5 + p7

25/73

Deriving polyhedral reductions – Step 2
Polyhedral Reduction

t2

t4

4096

p4

t1

t3

t6

t5

p8
t7

t08192

p0

8192

p6

p2 p3

p5

p7

≡E2

8192

p0

p2

t2

p5

t4

4096

p4

t1

p3

t3

t6

t5 p7

p8
t7

t0

E2 ≜ p6 = p0 + p2 + p3 + p5 + p7

26/73

Deriving polyhedral reductions – Step 3
Polyhedral Reduction

8192

p0

p2

t2

p5

t4

4096

p4

t1

p3

t3

t6

t0

t5 p7

p8
t7

≡E3

8192

p0

p2

t2

p5

t4

4096

p4

t1

p3

t3

t6 a1

t0

E3 ≜ a1 = p7 + p8

26/73

Deriving polyhedral reductions – Step 3
Polyhedral Reduction

8192

p0

p2

t2

p5

t4

4096

p4

t1

p3

t3

t6

t0

t5 p7

p8
t7

≡E3

8192

p0

p2

t2

p5

t4

4096

p4

t1

p3

t3

t6 a1

t0

Rule [agg]: agglomerate places p7 and p8 into a new place

E3 ≜ a1 = p7 + p8

26/73

Deriving polyhedral reductions – Step 3
Polyhedral Reduction

8192

p0

p2

t2

p5

t4

4096

p4

t1

p3

t3

t6

t0

t5 p7

p8
t7

≡E3

8192

p0

p2

t2

p5

t4

4096

p4

t1

p3

t3

t6 a1

t0

E3 ≜ a1 = p7 + p8

27/73

Deriving polyhedral reductions – Step 4
Polyhedral Reduction

8192

p0

p2

t2

t4

4096

p4

t1

p3

t3

t0

p5

t6 a1

≡E4 t2

p2

a2

t3

t1t0

t4

8192

p0

p3

4096

p4

Rule [concat]: concatenate a1 and p5 into a new place

27/73

Deriving polyhedral reductions – Step 4
Polyhedral Reduction

8192

p0

p2

t2

t4

4096

p4

t1

p3

t3

t0

p5

t6 a1

≡E4 t2

p2

a2

t3

t1t0

t4

8192

p0

p3

4096

p4

Rule [concat]: concatenate a1 and p5 into a new place

27/73

Deriving polyhedral reductions – Step 4
Polyhedral Reduction

8192

p0

p2

t2

t4

4096

p4

t1

p3

t3

t0

p5

t6 a1

≡E4 t2

p2

a2

t3

t1t0

t4

8192

p0

p3

4096

p4

E4 ≜ a2 = a1 + p5

28/73

Deriving polyhedral reductions – Step 4
Polyhedral Reduction

8192

p0

p2

t2

p5

t4

t1

p3

t3

t6

t5 p78192

p6

p8
t7

t0 8192

p1

4096

p4

≡E t2

p2

a2

t3

t1t0

t4

8192

p0

p3

4096

p4

E ≜ ∃a1.


p1 = p4 + 4096
p6 = p0 + p2 + p3 + p5 + p7
a1 = p7 + p8
a2 = a1 + p6

29/73

Composition laws
Polyhedral Reduction

Reduction rules: [red], [agg], [concat], ...

Laws:
▶ Composability (congruence for ∥-composition)
▶ Transitivity
▶ Relabeling

30/73

Prevalence of reductions over the 1 426 MCC instances
Polyhedral Reduction

0 200 400 600 800 1000 1200 1400

Number of instances

0

20

40

60

80

100

R
ed
u
ct
io
n
ra
ti
o
(%

)

▶ 80% of instances are reduced by > 1%

▶ Half of them are significantly reduced (reduction ratio > 30%)

▶ 14% of fully reducible instances

30/73

Prevalence of reductions over the 1 426 MCC instances
Polyhedral Reduction

0 200 400 600 800 1000 1200 1400

Number of instances

0

20

40

60

80

100

R
ed
u
ct
io
n
ra
ti
o
(%

)

How to combine with the reachability problem?

31/73

Combination with reachability
Polyhedral Reduction

▶ Is F1 reachable in (N1,m1)? F1 ≜

{
3p7 + 2p8 ⩾ p6

p8 ⩾ p1

Definition (E -Transform Formula)

Formula F2(p2) ≜ ∃q1. Ẽ (q1,p2) ∧ F1(q1) is the E -transform of F1.

F2 ≜ ∃q0, .., q8. ∃a1.


q1 = q4 + 4096
q6 = q0 + q2 + q3 + q5 + q7
a1 = q7 + q8
a2 = a1 + q6

∧


p0 = q0
p2 = q2
p3 = q3
p4 = q4

∧
{

3q7 + 2q8 ⩾ q6
q8 ⩾ q1

▶ Is the E -transform formula F2 reachable in (N2,m2)?

31/73

Combination with reachability
Polyhedral Reduction

▶ Is F1 reachable in (N1,m1)? F1 ≜

{
3p7 + 2p8 ⩾ p6

p8 ⩾ p1

Definition (E -Transform Formula)

Formula F2(p2) ≜ ∃p1. Ẽ (p1,p2) ∧ F1(p1) is the E -transform of F1.

F2 ≜ ∃q0, .., q8. ∃a1.


q1 = q4 + 4096
q6 = q0 + q2 + q3 + q5 + q7
a1 = q7 + q8
a2 = a1 + q6

∧


p0 = q0
p2 = q2
p3 = q3
p4 = q4

∧
{

3q7 + 2q8 ⩾ q6
q8 ⩾ q1

▶ Is the E -transform formula F2 reachable in (N2,m2)?

31/73

Combination with reachability
Polyhedral Reduction

▶ Is F1 reachable in (N1,m1)? F1 ≜

{
3p7 + 2p8 ⩾ p6

p8 ⩾ p1

Definition (E -Transform Formula)

Formula F2(p2) ≜ ∃q1. Ẽ (q1,p2) ∧ F1(q1) is the E -transform of F1.

F2 ≜ ∃q0, .., q8. ∃a1.


q1 = q4 + 4096
q6 = q0 + q2 + q3 + q5 + q7
a1 = q7 + q8
a2 = a1 + q6

∧


p0 = q0
p2 = q2
p3 = q3
p4 = q4

∧
{

3q7 + 2q8 ⩾ q6
q8 ⩾ q1

▶ Is the E -transform formula F2 reachable in (N2,m2)?

31/73

Combination with reachability
Polyhedral Reduction

▶ Is F1 reachable in (N1,m1)? F1 ≜

{
3p7 + 2p8 ⩾ p6

p8 ⩾ p1

Definition (E -Transform Formula)

Formula F2(p2) ≜ ∃q1. Ẽ (q1,p2) ∧ F1(q1) is the E -transform of F1.

F2 ≜ ∃q0, .., q8. ∃a1.


q1 = q4 + 4096
q6 = q0 + q2 + q3 + q5 + q7
a1 = q7 + q8
a2 = a1 + q6

∧


p0 = q0
p2 = q2
p3 = q3
p4 = q4

∧
{

3q7 + 2q8 ⩾ q6
q8 ⩾ q1

▶ Is the E -transform formula F2 reachable in (N2,m2)?

32/73

Fundamental results on E -transform formulas
Polyhedral Reduction

Theorem (Reachability Conservation)

F1 is reachable in N1 if and only if its E-transform formula F2 is reachable in N2.

Corollary (Invariant Conservation)

¬F1 invariant on N1 if and only if ¬F2 invariant on N2.

Does it fit well with SMT-based methods?

32/73

Fundamental results on E -transform formulas
Polyhedral Reduction

Theorem (Reachability Conservation)

F1 is reachable in N1 if and only if its E-transform formula F2 is reachable in N2.

Corollary (Invariant Conservation)

¬F1 invariant on N1 if and only if ¬F2 invariant on N2.

Does it fit well with SMT-based methods?

32/73

Fundamental results on E -transform formulas
Polyhedral Reduction

Theorem (Reachability Conservation)

F1 is reachable in N1 if and only if its E-transform formula F2 is reachable in N2.

Corollary (Invariant Conservation)

¬F1 invariant on N1 if and only if ¬F2 invariant on N2.

Does it fit well with SMT-based methods?

33/73

Bounded Model Checking (BMC) [Biere, 99]
Polyhedral Reduction

1. ϕ0 ≜ m0(p(0))

2. ϕ1 ≜ ϕ0 ∧ T(p(0),p(1))

. . .

3. ϕi ≜ ϕi−1 ∧ T(p(i−1),p(i))

ϕ0 ∧ F (p(0)) sat unsat

ϕ0 ∧ F (p(1)) sat unsat

ϕi ∧ F (p(i)) sat

ϕ0 F

ϕ1

. . .

ϕi

If ϕi (N1) ∧ F1 sat in N1 then there is j ⩽ i such that ϕj(N2) ∧ F2 sat in N2

33/73

Bounded Model Checking (BMC) [Biere, 99]
Polyhedral Reduction

1. ϕ0 ≜ m0(p(0))

2. ϕ1 ≜ ϕ0 ∧ T(p(0),p(1))

. . .

3. ϕi ≜ ϕi−1 ∧ T(p(i−1),p(i))

ϕ0 ∧ F (p(0)) sat?

ϕ0 ∧ F (p(1)) sat unsat

ϕi ∧ F (p(i)) sat

ϕ0 F

ϕ1

. . .

ϕi

If ϕi (N1) ∧ F1 sat in N1 then there is j ⩽ i such that ϕj(N2) ∧ F2 sat in N2

33/73

Bounded Model Checking (BMC) [Biere, 99]
Polyhedral Reduction

1. ϕ0 ≜ m0(p(0))

2. ϕ1 ≜ ϕ0 ∧ T(p(0),p(1))

. . .

3. ϕi ≜ ϕi−1 ∧ T(p(i−1),p(i))

ϕ0 ∧ F (p(0)) sat unsat

ϕ0 ∧ F (p(1)) sat unsat

ϕi ∧ F (p(i)) sat

ϕ0 F

ϕ1

. . .

ϕi

If ϕi (N1) ∧ F1 sat in N1 then there is j ⩽ i such that ϕj(N2) ∧ F2 sat in N2

33/73

Bounded Model Checking (BMC) [Biere, 99]
Polyhedral Reduction

1. ϕ0 ≜ m0(p(0))

2. ϕ1 ≜ ϕ0 ∧ T(p(0),p(1))

. . .

3. ϕi ≜ ϕi−1 ∧ T(p(i−1),p(i))

ϕ0 ∧ F (p(0)) sat unsat

ϕ0 ∧ F (p(1)) sat unsat

ϕi ∧ F (p(i)) sat

ϕ0 F

ϕ1

. . .

ϕi

If ϕi (N1) ∧ F1 sat in N1 then there is j ⩽ i such that ϕj(N2) ∧ F2 sat in N2

33/73

Bounded Model Checking (BMC) [Biere, 99]
Polyhedral Reduction

1. ϕ0 ≜ m0(p(0))

2. ϕ1 ≜ ϕ0 ∧ T(p(0),p(1))

. . .

3. ϕi ≜ ϕi−1 ∧ T(p(i−1),p(i))

ϕ0 ∧ F (p(0)) sat unsat

ϕ1 ∧ F (p(1)) sat?

ϕi ∧ F (p(i)) sat

ϕ0 F

ϕ1

. . .

ϕi

If ϕi (N1) ∧ F1 sat in N1 then there is j ⩽ i such that ϕj(N2) ∧ F2 sat in N2

33/73

Bounded Model Checking (BMC) [Biere, 99]
Polyhedral Reduction

1. ϕ0 ≜ m0(p(0))

2. ϕ1 ≜ ϕ0 ∧ T(p(0),p(1))

. . .

3. ϕi ≜ ϕi−1 ∧ T(p(i−1),p(i))

ϕ0 ∧ F (p(0)) sat unsat

ϕ0 ∧ F (p(1)) sat unsat

ϕi ∧ F (p(i)) sat

ϕ0 F

ϕ1

. . .

ϕi

If ϕi (N1) ∧ F1 sat in N1 then there is j ⩽ i such that ϕj(N2) ∧ F2 sat in N2

33/73

Bounded Model Checking (BMC) [Biere, 99]
Polyhedral Reduction

1. ϕ0 ≜ m0(p(0))

2. ϕ1 ≜ ϕ0 ∧ T(p(0),p(1))

. . .

3. ϕi ≜ ϕi−1 ∧ T(p(i−1),p(i))

ϕ0 ∧ F (p(0)) sat unsat

ϕ0 ∧ F (p(1)) sat unsat

ϕi ∧ F (p(i)) sat

ϕ0 F

ϕ1

. . .

ϕi

If ϕi (N1) ∧ F1 sat in N1 then there is j ⩽ i such that ϕj(N2) ∧ F2 sat in N2

33/73

Bounded Model Checking (BMC) [Biere, 99]
Polyhedral Reduction

1. ϕ0 ≜ m0(p(0))

2. ϕ1 ≜ ϕ0 ∧ T(p(0),p(1))

. . .

3. ϕi ≜ ϕi−1 ∧ T(p(i−1),p(i))

ϕ0 ∧ F (p(0)) sat unsat

ϕ0 ∧ F (p(1)) sat unsat

ϕi ∧ F (p(i)) sat

ϕ0 F

ϕ1

. . .

ϕi

If ϕi (N1) ∧ F1 sat in N1 then there is j ⩽ i such that ϕj(N2) ∧ F2 sat in N2

33/73

Bounded Model Checking (BMC) [Biere, 99]
Polyhedral Reduction

1. ϕ0 ≜ m0(p(0))

2. ϕ1 ≜ ϕ0 ∧ T(p(0),p(1))

. . .

3. ϕi ≜ ϕi−1 ∧ T(p(i−1),p(i))

ϕ0 ∧ F (p(0)) sat unsat

ϕ0 ∧ F (p(1)) sat unsat

ϕi ∧ F (p(i)) sat

ϕ0 F

ϕ1

. . .

ϕi

If ϕi (N1) ∧ F1 sat in N1 then there is j ⩽ i such that ϕj(N2) ∧ F2 sat in N2

33/73

Bounded Model Checking (BMC) [Biere, 99]
Polyhedral Reduction

1. ϕ0 ≜ m0(p(0))

2. ϕ1 ≜ ϕ0 ∧ T(p(0),p(1))

. . .

3. ϕi ≜ ϕi−1 ∧ T(p(i−1),p(i))

ϕ0 ∧ F (p(0)) sat unsat

ϕ0 ∧ F (p(1)) sat unsat

ϕi ∧ F (p(i)) sat

ϕ0 F

ϕ1

. . .

ϕi

If ϕi (N1) ∧ F1 sat in N1 then there is j ≪ i such that ϕj(N2) ∧ F2 sat in N2

34/73

Performance evaluation: 50% ⩽ reduction ratio < 100%
Polyhedral Reduction

0 1 10 100

Computation time without reduction (s)

0

1

10

100

C
om

p
u
ta
ti
on

ti
m
e
w
it
h
re
d
u
ct
io
n
(s
)

0

10

0 100

×2.6 computed queries

35/73

Performance evaluation: 1% ⩽ reduction ratio < 25%
Polyhedral Reduction

0 1 10 100

Computation time without reduction (s)

0

1

10

100

C
om

p
u
ta
ti
on

ti
m
e
w
it
h
re
d
u
ct
io
n
(s
)

0

25

0 50

×1.22 computed queries

36/73

Outline

Token Flow Graphs

Project and Conquer

Proving Polyhedral Equivalences

Computing Invariance Certificates

Concurrency Relation Computation

Polyhedral Reduction
SM

PT

Ko
ng

O
ct
an
t

Re
du
ct
ro
n

37/73

SmallOperatingSystem
Token Flow Graphs

8192

p0

p2

t2

p5

t4

t1

p3

t3

t6

t5 p78192

p6

p8
t7

t0 8192

p1

4096

p4

≡E t2

p2

a2

t3

t1t0

t4

8192

p0

p3

4096

p4

E ≜ ∃a1.


p1 = p4 + 4096
p6 = p0 + p2 + p3 + p5 + p7
a1 = p7 + p8
a2 = a1 + p5

38/73

Motivation
Token Flow Graphs

▶ Reason on graphs instead of solving Presburger formulas

▶ Capture the particular structure of constraints from polyhedral reductions

▶ Directed Acyclic Graph (DAG) with two kinds of arcs

E ≜ ∃a1.


p1 = p4 + 4096
p6 = p0 + p2 + p3 + p5 + p7
a1 = p7 + p8
a2 = a1 + p5

38/73

Motivation
Token Flow Graphs

▶ Reason on graphs instead of solving Presburger formulas

▶ Capture the particular structure of constraints from polyhedral reductions

▶ Directed Acyclic Graph (DAG) with two kinds of arcs

E ≜ ∃a1.


p1 = p4 + 4096
p6 = p0 + p2 + p3 + p5 + p7
a1 = p7 + p8
a2 = a1 + p5

39/73

Construction
Token Flow Graphs

∃a1.


p1 = p4 + 4096
p6 = p0 + p2 + p3 + p5 + p7
a1 = p7 + p8
a2 = a1 + p5

p2

a2

8192

p0

p3

4096

p4

t2 t3

t1t0

t4

(N2,m2)

a2p0 p2 p3 p4

p5 a1

p7 p8

p6

4096

p1

▶ Remark : Roots are places of the reduced net (N2,m2)

39/73

Construction
Token Flow Graphs

∃a1.


p1 = p4 + 4096
p6 = p0 + p2 + p3 + p5 + p7
a1 = p7 + p8
a2 = a1 + p5

p2

a2

8192

p0

p3

4096

p4

t2 t3

t1t0

t4

(N2,m2)

a2p0 p2 p3 p4

p5 a1

p7 p8

p6

4096

p1

▶ Remark : Roots are places of the reduced net (N2,m2)

39/73

Construction
Token Flow Graphs

∃a1.


p1 = p4 + 4096
p6 = p0 + p2 + p3 + p5 + p7
a1 = p7 + p8
a2 = a1 + p5

p2

a2

8192

p0

p3

4096

p4

t2 t3

t1t0

t4

(N2,m2)

a2p0 p2 p3 p4

p5 a1

p7 p8

p6

4096

p1

▶ Remark : Roots are places of the reduced net (N2,m2)

39/73

Construction
Token Flow Graphs

∃a1.


p1 = p4 + 4096
p6 = p0 + p2 + p3 + p5 + p7
a1 = p7 + p8
a2 = a1 + p5

p2

a2

8192

p0

p3

4096

p4

t2 t3

t1t0

t4

(N2,m2)

a2p0 p2 p3 p4

p5 a1

p7 p8

p6

4096

p1

▶ Remark : Roots are places of the reduced net (N2,m2)

39/73

Construction
Token Flow Graphs

∃a1.


p1 = p4 + 4096
p6 = p0 + p2 + p3 + p5 + p7
a1 = p7 + p8
a2 = a1 + p5

p2

a2

8192

p0

p3

4096

p4

t2 t3

t1t0

t4

(N2,m2)

a2p0 p2 p3 p4

p5 a1

p7 p8

p6

4096

p1

▶ Remark : Roots are places of the reduced net (N2,m2)

39/73

Construction
Token Flow Graphs

∃a1.


p1 = p4 + 4096
p6 = p0 + p2 + p3 + p5 + p7
a1 = p7 + p8
a2 = a1 + p5

p2

a2

8192

p0

p3

4096

p4

t2 t3

t1t0

t4

(N2,m2)

a2p0 p2 p3 p4

p5 a1

p7 p8

p6

4096

p1

▶ Remark : Roots are places of the reduced net (N2,m2)

40/73

Configuration of a TFG
Token Flow Graphs

a2p0 p2 p3 p4

p5 a1

p7 p8

p6

4096

p1

4 4096

5000

0 1 2 3

1 2

0 2

4

▶ Configuration c : partial function from set of nodes V to N

▶ Well-defined: c ∧ E is satisfiable

▶ Total: defined for all nodes

41/73

Configuration reachability
Token Flow Graphs

8192

p0

p2

t2

p5

t4

t1

p3

t3

t6

t5 p78192

p6

p8
t7

t0 8192

p1

4096

p4

m′ ≜



p0 = 8184
p1 = 8192
p2 = 0
p3 = 0
p4 = 4096
p5 = 5
p6 = 8190
p7 = 1
p8 = 2

Is m′ reachable from the initial marking?

42/73

Configuration reachability
Token Flow Graphs

a2p0 p2 p3 p4

p5 a1

p7 p8

p6

4096

p1

40968184

8192

0 0 4096

5

8190

1 2

3

8

m′ ≜



p0 = 8184
p1 = 8192
p2 = 0
p3 = 0
p4 = 4096
p5 = 5
p6 = 8190
p7 = 1
p8 = 2

Theorem (Reachable marking extension and unicity)

If m′ is a marking in R(N1,m1) then there exists a unique, total and well-defined
configuration c of JEK such that c|N1

= m.

Corollary: if c does not exist then m′ not reachable

42/73

Configuration reachability
Token Flow Graphs

a2p0 p2 p3 p4

p5 a1

p7 p8

p6

4096

p1

40968184

8192

0 0 4096

5

8190

1 2

3

8

m′ ≜



p0 = 8184
p1 = 8192
p2 = 0
p3 = 0
p4 = 4096
p5 = 5
p6 = 8190
p7 = 1
p8 = 2

Theorem (Reachable marking extension and unicity)

If m′ is a marking in R(N1,m1) then there exists a unique, total and well-defined
configuration c of JEK such that c|N1

= m.

Corollary: if c does not exist then m′ not reachable

42/73

Configuration reachability
Token Flow Graphs

a2p0 p2 p3 p4

p5 a1

p7 p8

p6

4096

p1

40968184

8192

0 0 4096

5

8190

1 2

3

8

m′ ≜



p0 = 8184
p1 = 8192
p2 = 0
p3 = 0
p4 = 4096
p5 = 5
p6 = 8190
p7 = 1
p8 = 2

Theorem (Reachable marking extension and unicity)

If m′ is a marking in R(N1,m1) then there exists a unique, total and well-defined
configuration c of JEK such that c|N1

= m.

Corollary: if c does not exist then m′ not reachable

42/73

Configuration reachability
Token Flow Graphs

a2p0 p2 p3 p4

p5 a1

p7 p8

p6

4096

p1

40968184

8192

0 0 4096

5

8190

1 2

3

8

m′ ≜



p0 = 8184
p1 = 8192
p2 = 0
p3 = 0
p4 = 4096
p5 = 5
p6 = 8190
p7 = 1
p8 = 2

Theorem (Reachable marking extension and unicity)

If m′ is a marking in R(N1,m1) then there exists a unique, total and well-defined
configuration c of JEK such that c|N1

= m.

Corollary: if c does not exist then m′ not reachable

42/73

Configuration reachability
Token Flow Graphs

a2p0 p2 p3 p4

p5 a1

p7 p8

p6

4096

p1

40968184

8192

0 0 4096

5

8190

1 2

3

8

m′ ≜



p0 = 8184
p1 = 8192
p2 = 0
p3 = 0
p4 = 4096
p5 = 5
p6 = 8190
p7 = 1
p8 = 2

Theorem (Reachable marking extension and unicity)

If m′ is a marking in R(N1,m1) then there exists a unique, total and well-defined
configuration c of JEK such that c|N1

= m.

Corollary: if c does not exist then m′ not reachable

42/73

Configuration reachability
Token Flow Graphs

a2p0 p2 p3 p4

p5 a1

p7 p8

p6

4096

p1

40968184

8192

0 0 4096

5

8190

1 2

3

8

m′ ≜



p0 = 8184
p1 = 8192
p2 = 0
p3 = 0
p4 = 4096
p5 = 5
p6 = 8190
p7 = 1
p8 = 2

Theorem (Reachable marking extension and unicity)

If m′ is a marking in R(N1,m1) then there exists a unique, total and well-defined
configuration c of JEK such that c|N1

= m.

Corollary: if c does not exist then m′ not reachable

42/73

Configuration reachability
Token Flow Graphs

a2p0 p2 p3 p4

p5 a1

p7 p8

p6

4096

p1

40968184

8192

0 0 4096

5

8190

1 2

3

8

m′ ≜



p0 = 8184
p1 = 8192
p2 = 0
p3 = 0
p4 = 4096
p5 = 5
p6 = 8190
p7 = 1
p8 = 2

Theorem (Reachability equivalence)

Given a total, well-defined configuration c:
c|N2

∈ R(N2,m2) if and only if c|N1
∈ R(N1,m1)

Corollary: if c does not exist then m′ not reachable

43/73

Non-TFGizable polyhedral reduction
Token Flow Graphs

8192

p0

p2

t2

p5

t4

t1

p3

t3

t6

t5 p78192

p6

p8
t7

t0 8192

p1

4096

p4

≡E t2

p2

a2

t3

t1t0

t4

8192

p0

p3

4096

p4

E ≜ ∃a1.


p1 = p4 + 4096
p6 = p0 + p2 + p3 + p5 + p7
a1 = p7 + p8
a2 = a1 + p5

44/73

Non-TFGizable polyhedral reduction
Token Flow Graphs

t2

p2

t0

t4

8192

p0

a2

p3

4096

p4

t1

t3

≡E5 4096

a4

a3

t2

p2

t0

t4

8192

p0

E5 ≜

{
a3 = a2 + p3
a4 = p4 + p3

44/73

Non-TFGizable polyhedral reduction
Token Flow Graphs

t2

p2

t0

t4

8192

p0

a2

p3

4096

p4

t1

t3

≡E5 4096

a4

a3

t2

p2

t0

t4

8192

p0

E5 ≜

{
a3 = a2 + p3
a4 = p4 + p3

44/73

Non-TFGizable polyhedral reduction
Token Flow Graphs

t2

p2

t0

t4

8192

p0

a2

p3

4096

p4

t1

t3 ≡E5 4096

a4

a3

t2

p2

t0

t4

8192

p0

E5 ≜

{
a3 = a2 + p3
a4 = p4 + p3

45/73

Non-TFGizable polyhedral reduction
Token Flow Graphs

4096

a4

a3

t2

p2

t0

t4

8192

p0

≡E6 ∅

Live Marked Graph: state equation is exact!

E6 ≜

{
a3 + p0 + p2 = 8192

p2 + a4 = 4096

45/73

Non-TFGizable polyhedral reduction
Token Flow Graphs

4096

a4

a3

t2

p2

t0

t4

8192

p0

≡E6 ∅

Live Marked Graph: state equation is exact!

E6 ≜

{
a3 + p0 + p2 = 8192

p2 + a4 = 4096

45/73

Non-TFGizable polyhedral reduction
Token Flow Graphs

4096

a4

a3

t2

p2

t0

t4

8192

p0

≡E6 ∅

Live Marked Graph: state equation is exact!

E6 ≜

{
a3 + p0 + p2 = 8192

p2 + a4 = 4096

46/73

Prevalence of reductions over the MCC instances
Token Flow Graphs

0 200 400 600 800 1000 1200 1400

Number of instances

0

20

40

60

80

100

R
ed
u
ct
io
n
ra
ti
o
(%

)

Best possible reduction with Reduce

Reduction leading to a well-formed TFG

47/73

Outline

Token Flow Graphs

Project and Conquer

Proving Polyhedral Equivalences

Computing Invariance Certificates

Concurrency Relation Computation

Polyhedral Reduction
SM

PT

Ko
ng

O
ct
an
t

Re
du
ct
ro
n

48/73

Previous context
Project and Conquer

Definition (E -Transform Formula)

F2(p2) ≜ ∃p1. Ẽ (p1,p2) ∧ F1(p1) is the E -transform of F1

Theorem (Reachability Conservation)

F1 reachable in N1 if and only if F2 reachable in N2

▶ Not suitable with random exploration
(need to evaluate a quantified formula for each visited state)

▶ Not usable with standard model-checkers
(only support quantifier-free formulas on the set of places)

We introduce a procedure to eliminate quantifiers in F2 (EXPSPACE in general)

48/73

Previous context
Project and Conquer

Definition (E -Transform Formula)

F2(p2) ≜ ∃p1. Ẽ (p1,p2) ∧ F1(p1) is the E -transform of F1

Theorem (Reachability Conservation)

F1 reachable in N1 if and only if F2 reachable in N2

▶ Not suitable with random exploration
(need to evaluate a quantified formula for each visited state)

▶ Not usable with standard model-checkers
(only support quantifier-free formulas on the set of places)

We introduce a procedure to eliminate quantifiers in F2 (EXPSPACE in general)

48/73

Previous context
Project and Conquer

Definition (E -Transform Formula)

F2(p2) ≜ ∃p1. Ẽ (p1,p2) ∧ F1(p1) is the E -transform of F1

Theorem (Reachability Conservation)

F1 reachable in N1 if and only if F2 reachable in N2

▶ Not suitable with random exploration
(need to evaluate a quantified formula for each visited state)

▶ Not usable with standard model-checkers
(only support quantifier-free formulas on the set of places)

We introduce a procedure to eliminate quantifiers in F2 (EXPSPACE in general)

48/73

Previous context
Project and Conquer

Definition (E -Transform Formula)

F2(p2) ≜ ∃p1. Ẽ (p1,p2) ∧ F1(p1) is the E -transform of F1

Theorem (Reachability Conservation)

F1 reachable in N1 if and only if F2 reachable in N2

▶ Not suitable with random exploration
(need to evaluate a quantified formula for each visited state)

▶ Not usable with standard model-checkers
(only support quantifier-free formulas on the set of places)

We introduce a procedure to eliminate quantifiers in F2 (EXPSPACE in general)

49/73

Running example
Project and Conquer

a2p0 p2 p3

p7

p5 a1

p8

p6

p4 4096

p1

F1 ≜ (3p7 + 2p8 ⩾ p6) ∧ (p8 ⩾ p1)

49/73

Running example
Project and Conquer

a2p0 p2 p3

p7

p5 a1

p8

p6

p4 4096

p1

3 p7 + 2 p8 − p6 ⩾ 0
p8 − p1 ⩾ 0

49/73

Running example
Project and Conquer

a2p0 p2 p3

p7

p5 a1

p8

p6

p4 4096

p1

3 p7 + 2 p8 − p6 ⩾ 0
p8 − p1 ⩾ 0

49/73

Running example
Project and Conquer

a2p0 p2 p3

p5

p7

a1

p8

p6

p4 4096

p1

3 p7 + 2 p8 − p6 ⩾ 0
p8 − p1 ⩾ 0

3 p7 + 2 p8 − (p0 + p2 + p3 + p5 + p7) ⩾ 0
p8 − p1 ⩾ 0

49/73

Running example
Project and Conquer

a2p0 p2 p3

p7

p5 a1

p8

p6

p4 4096

p1

3 p7 + 2 p8 − p6 ⩾ 0
p8 − p1 ⩾ 0

2 p7 + 2 p8 − p0 − p2 − p3 − p5 ⩾ 0
p8 − p1 ⩾ 0

49/73

Running example
Project and Conquer

a2p0 p2 p3

p7

p5 a1

p8

p6

p4 4096

p1

2 p7 + 2 p8 − p0 − p2 − p3 − p5 ⩾ 0
p8 − p1 ⩾ 0

49/73

Running example
Project and Conquer

a2p0 p2 p3

p7

p5 a1

p8

p6

p4 4096

p1

2 p7 + 2 p8 − p0 − p2 − p3 − p5 ⩾ 0
p8 − p1 ⩾ 0

49/73

Running example
Project and Conquer

a2p0 p2 p3

p7

p5 a1

p8

p6

p4 4096

p1

2 p7 + 2 p8 − p0 − p2 − p3 − p5 ⩾ 0
p8 − p1 ⩾ 0

2 p7 + 2 p8 − p0 − p2 − p3 − p5 ⩾ 0
p8 − (p4 + 4096) ⩾ 0

49/73

Running example
Project and Conquer

a2p0 p2 p3

p7

p5 a1

p8

p6

p4 4096

p1

2 p7 + 2 p8 − p0 − p3 − p5 ⩾ 0
1 p8 − p1 ⩾ 0

2 p7 + 2 p8 − p0 − p2 p3 − p5 ⩾ 0
p8 − p4 − 4096 ⩾ 0

49/73

Running example
Project and Conquer

a2p0 p2 p3

p7

p5 a1

p8

p6

p4 4096

p1

2 p7 + 2 p8 − p0 − p2 − p3 − p5 ⩾ 0
0 p7 + 1 p8 − p4 − 4096 ⩾ 0

49/73

Running example
Project and Conquer

a2p0 p2 p3

p7

p5 a1

p8

p6

p4 4096

p1

2 p7 + 2 p8 − p0 − p2 − p3 − p5 ⩾ 0
0 p7 + 1 p8 − p4 − 4096 ⩾ 0

polarized: p8 variable with the highest coefficient in both literals

49/73

Running example
Project and Conquer

a2p0 p2 p3

p7

p5 a1

p8

p6

p4 4096

p1

2 p7 + 2 p8 − p0 − p2 − p3 − p5 ⩾ 0
0 p7 + 1 p8 − p4 − 4096 ⩾ 0

2 a1 − p0 − p2 − p3 − p5 ⩾ 0
1 a1 − p4 − 4096 ⩾ 0

polarized: p8 variable with the highest coefficient in both literals

49/73

Running example
Project and Conquer

a2p0 p2 p3

p7

p5 a1

p8

p6

p4 4096

p1

2 a1 − 1 p5 − p0 − p2 − p3 ⩾ 0
1 a1 + 0 p5 − p4 − 4096 ⩾ 0

49/73

Running example
Project and Conquer

a2p0 p2 p3

p7

p5 a1

p8

p6

p4 4096

p1

2 a1 − 1 p5 − p0 − p2 − p3 ⩾ 0
1 a1 + 0 p5 − p4 − 4096 ⩾ 0

polarized: a1 variable with the highest coefficient in both literals

49/73

Running example
Project and Conquer

a2p0 p2 p3

p7

p5 a1

p8

p6

p4 4096

p1

2 a1 − 1 p5 − p0 − p2 − p3 ⩾ 0
1 a1 + 0 p5 − p4 − 4096 ⩾ 0

2 a2 − p0 − p2 − p3 ⩾ 0
1 a2 − p4 − 4096 ⩾ 0

polarized: a1 variable with the highest coefficient in both literals

49/73

Running example
Project and Conquer

a2p0 p2 p3

p7

p5 a1

p8

p6

p4 4096

p1

3 p7 + 2 p8 − p6 ⩾ 0
p8 − p1 ⩾ 0

2 a2 − p0 − p2 − p3 ⩾ 0
a2 − p4 − 4096 ⩾ 0

F2 ≜ (2a2 ⩾ p0 + p2 + p3) ∧ (a2 ⩾ p4 + 4096)

50/73

If not polarized?
Project and Conquer

▶ under-approximation: If m2 |= F2 then ∃m1 s.t. m1≡E m2 and m1 |= F1

▶ over-approximation: If m1 |= F1 then ∃m2 s.t. m1≡E m2 and m2 |= F2

In practice, 80% of the formulas are polarized!

50/73

If not polarized?
Project and Conquer

▶ under-approximation: If m2 |= F2 then ∃m1 s.t. m1≡E m2 and m1 |= F1

▶ over-approximation: If m1 |= F1 then ∃m2 s.t. m1≡E m2 and m2 |= F2

In practice, 80% of the formulas are polarized!

51/73

Workflow
Project and Conquer

Net
reduction

(N1,m1)

TFG
construction

E

Fast
elimination

JEK

F1(p1)

Model checking

▶ Random walk

▶ k-induction

▶ TAPAAL

Net: (N2,m2)

Formula: F2(p2)

⊤ or ⊥

51/73

Workflow
Project and Conquer

Net
reduction

(N1,m1)

TFG
construction

E

Fast
elimination

JEK

F1(p1)

Model checking

▶ Random walk

▶ k-induction

▶ TAPAAL

Net: (N2,m2)

Formula: F2(p2)

⊤ or ⊥

52/73

Performance of fast elimination
Project and Conquer

0 5000 10000 15000 20000

Number of computed projections

0.01

0.1

1

10

100

T
im

e
lim

it
p
er

q
u
er
y
(s
)

Redlog

isl

Octant

Octant: 99.5%
isl: 61%
Redlog: 33%

53/73

Workflow
Project and Conquer

Net
reduction

(N1,m1)

TFG
construction

E

Fast
elimination

JEK

F1(p1)

Model checking
▶ Random walk

▶ k-induction

▶ TAPAAL

Net: (N2,m2)

Formula: F2(p2)

⊤ or ⊥

54/73

Gains with k-induction: 50% ⩽ reduction ratio ⩽ 100%
Project and Conquer

0 500 1000 1500

Number of computed queries

0.1

1

10

100

1000

T
im

e
lim

it
p
er

q
u
er
y
(s
)

Original

Projected

55/73

Gains with k-induction: 1% ⩽ reduction ratio ⩽ 50%
Project and Conquer

0 500 1000 1500 2000

Number of computed queries

0.1

1

10

100

1000

T
im

e
lim

it
p
er

q
u
er
y
(s
)

Original

Projected

56/73

Workflow
Project and Conquer

Net
reduction

(N1,m1)

TFG
construction

E

Fast
elimination

JEK

F1(p1)

Model checking

▶ Random walk

▶ k-induction

▶ TAPAAL

(N2,m2)

F2(p2)

⊤ or ⊥

57/73

Gains with TAPAAL: challenging queries
Project and Conquer

0 100 200 300

Number of computed queries

1

10

100

1000

T
im

e
lim

it
p
er

q
u
er
y
(s
)

Original

Projected

LoLA TAPAAL

ITS-Tools

×
×

58/73

Outline

Token Flow Graphs

Project and Conquer

Proving Polyhedral Equivalences

Computing Invariance Certificates

Concurrency Relation Computation

Polyhedral Reduction
SM

PT

Ko
ng

O
ct
an
t

Re
du
ct
ro
n

59/73

Undecidability
Proving Polyhedral Equivalence

Theorem
The problem of checking a statement (N1,m1)≡E (N2,m2) is undecidable.

Proof.
▶ When E ≜ True: equivalent to the marking equivalence problem

▶ Undecidable from [Hack 76]

59/73

Undecidability
Proving Polyhedral Equivalence

Theorem
The problem of checking a statement (N1,m1)≡E (N2,m2) is undecidable.

Proof.
▶ When E ≜ True: equivalent to the marking equivalence problem

▶ Undecidable from [Hack 76]

60/73

Challenges and proposal
Proving Polyhedral Equivalence

Challenges:

▶ More general notion of equivalence with a complete procedure

▶ Presburger sets of initial markings C1, C2

Proposal:

▶ Parametric polyhedral equivalence, (N1,C1) ≊E (N2,C2)

▶ SMT constraints that ensure the equivalence

61/73

Parametric nets
Proving Polyhedral Equivalence

y1

τ

y2

a b

c

≊x = y1 + y2 x

a b

c

Equivalence rule [concat], (N1,C1) ≊E (N2,C2)

61/73

Parametric nets
Proving Polyhedral Equivalence

y1

τ

y2

a b

c

≊x = y1 + y2 x

a b

c

σ1 ≜ σ2 ≜ a

Equivalence rule [concat], (N1,C1) ≊E (N2,C2)

61/73

Parametric nets
Proving Polyhedral Equivalence

y1

τ

y2

a b

c

≊x = y1 + y2 x

a b

c

σ1 ≜ a σ2 ≜ a

Equivalence rule [concat], (N1,C1) ≊E (N2,C2)

61/73

Parametric nets
Proving Polyhedral Equivalence

y1

τ

y2

a b

c

≊x = y1 + y2 x

a b

c

σ1 ≜ a σ2 ≜ a·c

Equivalence rule [concat], (N1,C1) ≊E (N2,C2)

61/73

Parametric nets
Proving Polyhedral Equivalence

y1

τ

y2

a b

c

≊x = y1 + y2 x

a b

c

σ1 ≜ a σ2 ≜ a·c

Equivalence rule [concat], (N1,C1) ≊E (N2,C2)

61/73

Parametric nets
Proving Polyhedral Equivalence

y1

τ

y2

a b

c

≊x = y1 + y2 x

a b

c

σ1 ≜ a·c σ2 ≜ a·c

Equivalence rule [concat], (N1,C1) ≊E (N2,C2)

61/73

Parametric nets
Proving Polyhedral Equivalence

y1

τ

y2

a b

cd

≊x = y1 + y2 x

a b

cd

Equivalence rule [concat], (N1,C1) ≊E (N2,C2)

61/73

Parametric nets
Proving Polyhedral Equivalence

y1

τ

y2

a b

cd

≊x = y1 + y2 x

a b

cd

σ1 ≜ σ2 ≜ d

Equivalence rule [concat], (N1,C1) ≊E (N2,C2)

61/73

Parametric nets
Proving Polyhedral Equivalence

y1

τ

y2

a b

cd

≊x = y1 + y2 x

a b

cd

σ1 ≜ d σ2 ≜ d

Equivalence rule [concat], (N1,C1) ≊E (N2,C2)

61/73

Parametric nets
Proving Polyhedral Equivalence

y1

τ

y2

a b

cd

≊x = y1 + y2 x

a b

cd

σ1 ≜ d σ2 ≜ d ·b

Equivalence rule [concat], (N1,C1) ≊E (N2,C2)

61/73

Parametric nets
Proving Polyhedral Equivalence

y1

τ

y2

a b

c

≊x = y1 + y2 x

a b

c

τ transitions may be irreversible choices

61/73

Parametric nets
Proving Polyhedral Equivalence

y1

τ

y2

a b

c

≊x = y1 + y2 x

a b

c

C1 ≜ (y2 = 0) C2 ≜ True

Equivalence rule [concat], (N1,C1) ≊E (N2,C2)

62/73

Silent state-spaces
Proving Polyhedral Equivalence

To prove (N1,C1) ≊E (N2,C2) we need to express m
ϵ
=⇒m′ with m |= C1 or m |= C2

Definition (Coherent net (N,C))

If m
σ
=⇒m′ with m ∈ C then ∃m′′ ∈ C . m

σ⟩
=⇒m′′ ∧m′′ ϵ

=⇒m′.

A Presburger predicate, say τ∗C such that

Rτ (N,C) = {m′ | m′ |= ∃x . C (x) ∧ τ∗C (x , x
′)}

Theorem
Given a parametric E-abstraction equivalence (N1,C1) ≊E (N2,C2), the silent
reachability sets Rτ (N1,C1) and Rτ (N2,C2) are Presburger-definable.

62/73

Silent state-spaces
Proving Polyhedral Equivalence

To prove (N1,C1) ≊E (N2,C2) we need to express m
ϵ
=⇒m′ with m |= C1 or m |= C2

Definition (Coherent net (N,C))

If m
σ
=⇒m′ with m ∈ C then ∃m′′ ∈ C . m

σ⟩
=⇒m′′ ∧m′′ ϵ

=⇒m′.

A Presburger predicate, say τ∗C such that

Rτ (N,C) = {m′ | m′ |= ∃x . C (x) ∧ τ∗C (x , x
′)}

Theorem
Given a parametric E-abstraction equivalence (N1,C1) ≊E (N2,C2), the silent
reachability sets Rτ (N1,C1) and Rτ (N2,C2) are Presburger-definable.

62/73

Silent state-spaces
Proving Polyhedral Equivalence

To prove (N1,C1) ≊E (N2,C2) we need to express m
ϵ
=⇒m′ with m |= C1 or m |= C2

Definition (Coherent net (N,C))

If m
σ
=⇒m′ with m ∈ C then ∃m′′ ∈ C . m

σ⟩
=⇒m′′ ∧m′′ ϵ

=⇒m′.

A Presburger predicate, say τ∗C such that

Rτ (N,C) = {m′ | m′ |= ∃x . C (x) ∧ τ∗C (x , x
′)}

Theorem
Given a parametric E-abstraction equivalence (N1,C1) ≊E (N2,C2), the silent
reachability sets Rτ (N1,C1) and Rτ (N2,C2) are Presburger-definable.

63/73

Flatness
Proving Polyhedral Equivalence

Theorem (Leroux, 2013)

For every VASS V , for every Presburger set Cin of configurations, the reachability
set ReachV(Cin) is Presburger if, and only if, V is flattable from Cin.

If candidate correct: we have methods to compute τ∗C (thanks FAST)

63/73

Flatness
Proving Polyhedral Equivalence

Theorem (Leroux, 2013)

For every VASS V , for every Presburger set Cin of configurations, the reachability
set ReachV(Cin) is Presburger if, and only if, V is flattable from Cin.

If candidate correct: we have methods to compute τ∗C (thanks FAST)

64/73

Decidability
Proving Polyhedral Equivalence

Theorem
The problem of checking a statement (N1,C1) ≊E (N2,C2) is decidable.

Proof.

▶ (N1,C1) ≊E (N2,C2) holds iff |= (Core 0) . . . |= (Core 3)

▶ Presburger arithmetic is decidable

▶ τ∗C can be computed using FAST if nets are flat

▶ Flat ↔ Presburger-definable (decidable [Hauschildt 90][Lambert 94])

64/73

Decidability
Proving Polyhedral Equivalence

Theorem
The problem of checking a statement (N1,C1) ≊E (N2,C2) is decidable.

Proof.
▶ (N1,C1) ≊E (N2,C2) holds iff |= (Core 0) . . . |= (Core 3)

▶ Presburger arithmetic is decidable

▶ τ∗C can be computed using FAST if nets are flat

▶ Flat ↔ Presburger-definable (decidable [Hauschildt 90][Lambert 94])

64/73

Decidability
Proving Polyhedral Equivalence

Theorem
The problem of checking a statement (N1,C1) ≊E (N2,C2) is decidable.

Proof.
▶ (N1,C1) ≊E (N2,C2) holds iff |= (Core 0) . . . |= (Core 3)

▶ Presburger arithmetic is decidable

▶ τ∗C can be computed using FAST if nets are flat

▶ Flat ↔ Presburger-definable (decidable [Hauschildt 90][Lambert 94])

64/73

Decidability
Proving Polyhedral Equivalence

Theorem
The problem of checking a statement (N1,C1) ≊E (N2,C2) is decidable.

Proof.
▶ (N1,C1) ≊E (N2,C2) holds iff |= (Core 0) . . . |= (Core 3)

▶ Presburger arithmetic is decidable

▶ τ∗C can be computed using FAST if nets are flat

▶ Flat ↔ Presburger-definable (decidable [Hauschildt 90][Lambert 94])

64/73

Decidability
Proving Polyhedral Equivalence

Theorem
The problem of checking a statement (N1,C1) ≊E (N2,C2) is decidable.

Proof.
▶ (N1,C1) ≊E (N2,C2) holds iff |= (Core 0) . . . |= (Core 3)

▶ Presburger arithmetic is decidable

▶ τ∗C can be computed using FAST if nets are flat

▶ Flat ↔ Presburger-definable (decidable [Hauschildt 90][Lambert 94])

65/73

Parametric equivalence instantiation
Proving Polyhedral Equivalence

Theorem (Parametric E -abstraction Instantiation)

Assume (N1,C1) ≊E (N2,C2) is a parametric E-abstraction. Then,

m1≡E m2 ∧m1 |= C1 ∧m2 |= C2 =⇒ (N1,m1) ≡E (N2,m2)

66/73

Performance evaluation
Proving Polyhedral Equivalence

▶ Proved our rules in less than 1 s ([red], [agg], [concat], etc.)

▶ Tested unsound rules → return which constraint failed

67/73

Performance evaluation: SwimmingPool
Proving Polyhedral Equivalence

WaitBag Undress InBath Dress Dressed

15

Bags

10

Cabins

20

OutEntered

E ≜


Cabins + Dress + Dressed + Undress +WaitBag = 10
Dress + Dressed + Entered + InBath + Out + Undress +WaitBag = 20
Bags + Dress + InBath + Undress = 15

Proving time: 11 s

68/73

Outline

Token Flow Graphs

Project and Conquer

Proving Polyhedral Equivalences

Computing Invariance Certificates

Concurrency Relation Computation

Polyhedral Reduction
SM

PT

Ko
ng

O
ct
an
t

Re
du
ct
ro
n

Epilogue

68/73

Outline

Token Flow Graphs

Project and Conquer

Proving Polyhedral Equivalences

Computing Invariance Certificates

Concurrency Relation Computation

Polyhedral Reduction
SM

PT

Ko
ng

O
ct
an
t

Re
du
ct
ro
n

Epilogue

69/73

Open science

▶ Making papers accessible
▶ HAL, arXiv

▶ Experimenting on accessible benchmarks
▶ Model Checking Contest

▶ Producing available tools and artifacts
▶ Open source tools available on GitHub
▶ Conference artifacts: TACAS, FM, VMCAI
▶ Artifact accompanying my manuscript

▶ Participating in competitions
▶ Model Checking Contest (2021 – 2023)

Creative Commons

69/73

Open science

▶ Making papers accessible
▶ HAL, arXiv

▶ Experimenting on accessible benchmarks
▶ Model Checking Contest

▶ Producing available tools and artifacts
▶ Open source tools available on GitHub
▶ Conference artifacts: TACAS, FM, VMCAI
▶ Artifact accompanying my manuscript

▶ Participating in competitions
▶ Model Checking Contest (2021 – 2023)

Creative Commons

69/73

Open science

▶ Making papers accessible
▶ HAL, arXiv

▶ Experimenting on accessible benchmarks
▶ Model Checking Contest

▶ Producing available tools and artifacts
▶ Open source tools available on GitHub
▶ Conference artifacts: TACAS, FM, VMCAI
▶ Artifact accompanying my manuscript

▶ Participating in competitions
▶ Model Checking Contest (2021 – 2023)

Creative Commons

69/73

Open science

▶ Making papers accessible
▶ HAL, arXiv

▶ Experimenting on accessible benchmarks
▶ Model Checking Contest

▶ Producing available tools and artifacts
▶ Open source tools available on GitHub
▶ Conference artifacts: TACAS, FM, VMCAI
▶ Artifact accompanying my manuscript

▶ Participating in competitions
▶ Model Checking Contest (2021 – 2023)

Creative Commons

70/73

Model Checking Contest (2021 – 2023)

30%

40%

50%

60%

70%

80%

90%

100%

20
18

20
19

20
20

20
21

20
22

20
23

BVT

enPAC

GreatSPN

ITS−Tools

LoLA

smpt

Tapaal

tedd

2021: BMC & PDR (coverability)

2022: Added standard methods

2023: Projection (+5.5%)

71/73

Contributions

Polyhedral Reduction

Token Flow Graphs Concurrency Relation Computation

Computing Invariance Certificates

Project and Conquer

Proving Polyhedral Equivalences

SM
PT

Ko
ng

O
ct
an
t

Re
du
ct
ro
n

[Petri Nets, 21][TACAS, 22][FM, 23][FI]

[SPIN 21][Petri Nets, 22][STTT][ToPNoC]

[VMCAI 24]

[Petri Nets, 23]

71/73

Contributions

Polyhedral Reduction

Token Flow Graphs Concurrency Relation Computation

Computing Invariance Certificates

Project and Conquer

Proving Polyhedral Equivalences

SM
PT

Ko
ng

O
ct
an
t

Re
du
ct
ro
n

[Petri Nets, 21][TACAS, 22][FM, 23][FI]

[SPIN 21][Petri Nets, 22][STTT][ToPNoC]

[VMCAI 24]

[Petri Nets, 23]

▶ We use a set of simple reductions, which are surprisingly efficient to reduce the
net size when used together.

71/73

Contributions

Polyhedral Reduction

Token Flow Graphs Concurrency Relation Computation

Computing Invariance Certificates

Project and Conquer

Proving Polyhedral Equivalences

SM
PT

Ko
ng

O
ct
an
t

Re
du
ct
ro
n

[Petri Nets, 21][TACAS, 22][FM, 23][FI]

[SPIN 21][Petri Nets, 22][STTT][ToPNoC]

[VMCAI 24]

[Petri Nets, 23]

▶ Reductions generate linear equations which characterize the state space
(partially or totally).

71/73

Contributions

Polyhedral Reduction

Token Flow Graphs Concurrency Relation Computation

Computing Invariance Certificates

Project and Conquer

Proving Polyhedral Equivalences

SM
PT

Ko
ng

O
ct
an
t

Re
du
ct
ro
n

[Petri Nets, 21][TACAS, 22][FM, 23][FI]

[SPIN 21][Petri Nets, 22][STTT][ToPNoC]

[VMCAI 24]

[Petri Nets, 23]

▶ We defined methods, and data structures, to transfer problems between the
initial and the reduced net. For the concurrency relation computation,
complexity is linear in the size of the output.

71/73

Contributions

Polyhedral Reduction

Token Flow Graphs Concurrency Relation Computation

Computing Invariance Certificates

Project and Conquer

Proving Polyhedral Equivalences

SM
PT

Ko
ng

O
ct
an
t

Re
du
ct
ro
n

[Petri Nets, 21][TACAS, 22][FM, 23][FI]

[SPIN 21][Petri Nets, 22][STTT][ToPNoC]

[VMCAI 24]

[Petri Nets, 23]

▶ We developed new SMT-based methods that works as well on bounded as
unbounded nets, and that provides certificate of invariance.

71/73

Contributions

Polyhedral Reduction

Token Flow Graphs Concurrency Relation Computation

Computing Invariance Certificates

Project and Conquer

Proving Polyhedral Equivalences

SM
PT

Ko
ng

O
ct
an
t

Re
du
ct
ro
n

[Petri Nets, 21][TACAS, 22][FM, 23][FI]

[SPIN 21][Petri Nets, 22][STTT][ToPNoC]

[VMCAI 24]

[Petri Nets, 23]

▶ Unexpected: quantifier elimination and automated proving.

71/73

Contributions

Polyhedral Reduction

Token Flow Graphs Concurrency Relation Computation

Computing Invariance Certificates

Project and Conquer

Proving Polyhedral Equivalences

SM
PT

Ko
ng

O
ct
an
t

Re
du
ct
ro
n

[Petri Nets, 21][TACAS, 22][FM, 23][FI]

[SPIN 21][Petri Nets, 22][STTT][ToPNoC]

[VMCAI 24]

[Petri Nets, 23]

▶ A toolbox composed of four open-source tools

72/73

Perspectives

▶ Reachability problem
▶ Easy at a first glance, but has picked the interest of researchers for decades

▶ Plenty of room to develop new semi-procedures and improve existing ones

▶ SMT-solvers are too general
▶ Specific solvers taking into account the underlying model
▶ Continue to explore relation with Presburger arithmetic

73/73

Questions?

Polyhedral Reduction

Token Flow Graphs Concurrency Relation Computation

Computing Invariance Certificates

Project and Conquer

Proving Polyhedral Equivalences

SM
PT

Ko
ng

O
ct
an
t

Re
du
ct
ro
n

[Petri Nets, 21][TACAS, 22][FM, 23][FI]

[SPIN, 21][Petri Nets, 22][STTT][ToPNoC]

[VMCAI, 24]

[Petri Nets, 23]

