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General context

▶ Verification of concurrent systems

▶ Model checking [Emerson and Clarke, 80] [Queille and Sifakis, 82]

Does an abstract model satisfy a formal specification?
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The SmallOperatingSystem example
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Techniques

▶ State-space construction
▶ Decision Diagrams
▶ Partial Order Reductions, symmetries, etc.
▶ Not adapted for reachability problems and cannot handle unbounded nets

▶ Portfolio of methods

▶ SMT-based model checking (thanks to the progress of the solvers)
▶ Counter-examples: BMC
▶ Invariants: k-induction, CEGAR, PDR

▶ Optimizations
▶ Structural reductions, slicing, etc.

Our approach is complementary!
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A polyhedral framework for reachability problems in Petri nets
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Petri nets

A strength of Petri net theory is the ability to reuse results from linear algebra, and
linear programming techniques, to reason on it:

▶ Potentially reachable markings, aka the State Equation

m = I .σ +m0

▶ Place invariants
σT .I = 0

▶ . . .
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Petri nets

Some transition t enabled at m when m |= ENBLt(p):

ENBLt(p) ≜
∧

i∈1..n
(pi ⩾ Pre(t, pi ))

We have m → m′ if and only if m,m′ |= T(p,p′):

T(p,p′) ≜
∨

t∈T ENBLt(p) ∧∆t(p,p′)

where the token displacement is defined as:

∆t(p,p′) ≜
∧

i∈1..n (p
′
i = pi + Post(t)(pi )− Pre(t)(pi ))

In general the relation m →∗ m′ cannot be encoded in the Presburger arithmetic

Same formalism for semantics and properties
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A polyhedral framework for reachability problems in Petri nets
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Reachability properties verification

▶ F reachable if and only if ∃m ∈ R(N,m0) such that m |= F

▶ F invariant if and only if ∀m ∈ R(N,m0) we have m |= F

EFF ≡ ¬ (AG¬F )
⊤ ⊥

EFF Witness Non-reachable
AGF Invariant Counter-example
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Some properties of interest

▶ Coverability: COVER(p, k) ≡ m(p) ≥ k

▶ Reachability: REACH(p, k) ≡ m(p) = k

▶ Quasi-liveness: QLIVE(t) ≡ ∧
p∈•t COVER(p,pre(t, p))

▶ Deadlock: DEAD ≡ ∧
t∈T

¬QLIVE(t)
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Reachability problems

▶ Decidable [Mayr, 1981] [Kosaraju, 1982] [Lambert, 1992]
... but still no complete and efficient method.

▶ Difficult (Ackermann-complete) [Czerwiński et al., 2022] [Leroux, 2022]

▶ Many tools
▶ ITS-Tools
▶ LoLA
▶ TAPAAL
▶ KReach
▶ FastForward
▶ . . .
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A polyhedral framework for reachability problems in Petri nets
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Net reductions [Berthelot, 76]

A reduction is a net transformation which reduces its size such that (for a given set of
properties) the reduced net is equivalent to the initial one.

(N,m0) ≡ (N ′,m′
0)

A reduction is characterized by:

▶ A Presburger predicate, E, of linear constraints between places.

▶ (Graph) transformation

▶ Application of conditions

▶ The preserved properties: boundedness; deadlock; quasi-liveness; reachability; . . .
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Polyhedral reductions

A polyhedral reduction is a net transformation which reduces its size such that we can
reconstruct the state space of the initial net from the reduced one.

(N,m0) ≡E (N ′,m′
0)

A polyhedral reduction is characterized by:

▶ A Presburger predicate, E, of linear constraints between places.

▶ (Graph) transformation

▶ Application of conditions

▶ The preserved properties: boundedness; deadlock; quasi-liveness; reachability; . . .
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SmallOperatingSystem

8192

p0

p2

t2

p5

t4

t1

p3

t3

t6

t5 p78192

p6

p8
t7

t0 8192

p1

4096

p4

≡E t2

p2

a2

t3

t1t0

t4

8192

p0

p3

4096

p4

E ≜ ∃a1.


p1 = p4 + 4096
p6 = p0 + p2 + p3 + p5 + p7
a1 = p7 + p8
a2 = a1 + p6



14/73

AirplaneLD-PT-0050

≡E

AirplaneLD-PT-4000: 30 000 variables and literals
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AirplaneLD-PT-0050

≡E

E contains about 400 variables and literals
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AirplaneLD-PT-0050

≡E

AirplaneLD-PT-4000: 30 000 variables and literals



15/73

SwimmingPool

WaitBag Undress InBath Dress Dressed

15

Bags

10

Cabins

20

OutEntered

E ≜


Cabins + Dress + Dressed + Undress +WaitBag = 10
Dress + Dressed + Entered + InBath + Out + Undress +WaitBag = 20
Bags + Dress + InBath + Undress = 15
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Benchmark (Model Checking Contest)

The Model Checking Contest is important in my work:

▶ A great source of model instances! ≈ 1 400 nets

▶ Also a source of reachability formulas ≈ 50 000 queries

▶ Software development: from prototypes to tools that can be reused by others
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Outline

1. Two new definitions

2. Two contributions

3. Epilogue
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Big picture
Polyhedral Reduction

(N1,m1)

3

x

y

(N2,m2) 3

a

7→

Net reduction example, with E : a = x + y

Relation between state-spaces
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Markings equivalence up-to E
Polyhedral Reduction

▶ Two markings m1 and m2 are compatible:

m1(p) = m2(p) for all p in P1 ∩ P2

▶ A marking m can be associated to system of equations m defined as:

p1 = m(p1) ∧ · · · ∧ pk = m(pk) where P = {p1, . . . , pk}

▶ We denote m1 ≡E m2 when:

E ∧m1 ∧m2 is satisfiable
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Polyhedral equivalence
Polyhedral Reduction

Definition (Relaxed E -equivalence)

(N1,m1)≡E (N2,m2) if and only if

(A1) initial markings are realated up-to E : m1≡E m2;

(A2a) for all markings m in R(N1,m1) or R(N2,m2): E ∧m is satisfiable;

(A2b) assume m′
1,m

′
2 are markings of N1,N2 related up-to E , such that

m′
1≡E m′

2, then m′
1 is reachable iff m′

2 is reachable.

We have two variant definitions:

▶ Composition (relies on observation sequences)

▶ Automated proving
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Key results: reachability checking
Polyhedral Reduction

Lemma (Reachability checking)

For all pairs of markings m′
1,m

′
2 of N1,N2 such that m′

1≡E m′
2:

if m′
2 ∈ R(N2,m2) then m′

1 ∈ R(N1,m1).

m1 m′
1

m2 m′
2

m1 ≡E m2
∀m′

1 . m′
1 ≡E m′

2
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Key results: invariance checking
Polyhedral Reduction

Lemma (Invariance checking)

For all m′
1 in R(N1,m1) there is m′

2 in R(N2,m2) such that m′
1≡E m′

2.

m1 m′
1

m2 m′
2

m1 ≡E m2 ∃m′
2 . m′

1 ≡E m′
2
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Deriving polyhedral reductions – Step 1
Polyhedral Reduction
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Deriving polyhedral reductions – Step 2
Polyhedral Reduction
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Deriving polyhedral reductions – Step 3
Polyhedral Reduction
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Polyhedral Reduction
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Deriving polyhedral reductions – Step 4
Polyhedral Reduction
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Deriving polyhedral reductions – Step 4
Polyhedral Reduction
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Composition laws
Polyhedral Reduction

Reduction rules: [red], [agg], [concat], ...

Laws:
▶ Composability (congruence for ∥-composition)
▶ Transitivity
▶ Relabeling
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Prevalence of reductions over the 1 426 MCC instances
Polyhedral Reduction
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▶ 80% of instances are reduced by > 1%

▶ Half of them are significantly reduced (reduction ratio > 30%)

▶ 14% of fully reducible instances
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Polyhedral Reduction
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How to combine with the reachability problem?
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Combination with reachability
Polyhedral Reduction

▶ Is F1 reachable in (N1,m1)? F1 ≜

{
3p7 + 2p8 ⩾ p6

p8 ⩾ p1

Definition (E -Transform Formula)

Formula F2(p2) ≜ ∃q1. Ẽ (q1,p2) ∧ F1(q1) is the E -transform of F1.

F2 ≜ ∃q0, .., q8. ∃a1.


q1 = q4 + 4096
q6 = q0 + q2 + q3 + q5 + q7
a1 = q7 + q8
a2 = a1 + q6

∧


p0 = q0
p2 = q2
p3 = q3
p4 = q4

∧
{

3q7 + 2q8 ⩾ q6
q8 ⩾ q1

▶ Is the E -transform formula F2 reachable in (N2,m2)?
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Fundamental results on E -transform formulas
Polyhedral Reduction

Theorem (Reachability Conservation)

F1 is reachable in N1 if and only if its E-transform formula F2 is reachable in N2.

Corollary (Invariant Conservation)

¬F1 invariant on N1 if and only if ¬F2 invariant on N2.

Does it fit well with SMT-based methods?
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Bounded Model Checking (BMC) [Biere, 99]
Polyhedral Reduction

1. ϕ0 ≜ m0(p(0))

2. ϕ1 ≜ ϕ0 ∧ T(p(0),p(1))

. . .

3. ϕi ≜ ϕi−1 ∧ T(p(i−1),p(i))

ϕ0 ∧ F (p(0)) sat unsat

ϕ0 ∧ F (p(1)) sat unsat

ϕi ∧ F (p(i)) sat

ϕ0 F

ϕ1

. . .

ϕi

If ϕi (N1) ∧ F1 sat in N1 then there is j ⩽ i such that ϕj(N2) ∧ F2 sat in N2
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Performance evaluation: 50% ⩽ reduction ratio < 100%
Polyhedral Reduction
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Performance evaluation: 1% ⩽ reduction ratio < 25%
Polyhedral Reduction
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Outline

Token Flow Graphs

Project and Conquer

Proving Polyhedral Equivalences

Computing Invariance Certificates

Concurrency Relation Computation

Polyhedral Reduction
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SmallOperatingSystem
Token Flow Graphs
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E ≜ ∃a1.


p1 = p4 + 4096
p6 = p0 + p2 + p3 + p5 + p7
a1 = p7 + p8
a2 = a1 + p5
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Motivation
Token Flow Graphs

▶ Reason on graphs instead of solving Presburger formulas

▶ Capture the particular structure of constraints from polyhedral reductions

▶ Directed Acyclic Graph (DAG) with two kinds of arcs

E ≜ ∃a1.


p1 = p4 + 4096
p6 = p0 + p2 + p3 + p5 + p7
a1 = p7 + p8
a2 = a1 + p5
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Construction
Token Flow Graphs

∃a1.


p1 = p4 + 4096
p6 = p0 + p2 + p3 + p5 + p7
a1 = p7 + p8
a2 = a1 + p5

p2

a2

8192

p0

p3

4096

p4

t2 t3

t1t0

t4

(N2,m2)

a2p0 p2 p3 p4

p5 a1

p7 p8

p6

4096

p1

▶ Remark : Roots are places of the reduced net (N2,m2)
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Configuration of a TFG
Token Flow Graphs
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▶ Configuration c : partial function from set of nodes V to N

▶ Well-defined: c ∧ E is satisfiable

▶ Total: defined for all nodes
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Configuration reachability
Token Flow Graphs
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m′ ≜



p0 = 8184
p1 = 8192
p2 = 0
p3 = 0
p4 = 4096
p5 = 5
p6 = 8190
p7 = 1
p8 = 2

Is m′ reachable from the initial marking?
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Configuration reachability
Token Flow Graphs
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p0 = 8184
p1 = 8192
p2 = 0
p3 = 0
p4 = 4096
p5 = 5
p6 = 8190
p7 = 1
p8 = 2

Theorem (Reachable marking extension and unicity)

If m′ is a marking in R(N1,m1) then there exists a unique, total and well-defined
configuration c of JEK such that c|N1

= m.

Corollary: if c does not exist then m′ not reachable
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configuration c of JEK such that c|N1

= m.

Corollary: if c does not exist then m′ not reachable
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Configuration reachability
Token Flow Graphs
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p0 = 8184
p1 = 8192
p2 = 0
p3 = 0
p4 = 4096
p5 = 5
p6 = 8190
p7 = 1
p8 = 2

Theorem (Reachability equivalence)

Given a total, well-defined configuration c:
c|N2

∈ R(N2,m2) if and only if c|N1
∈ R(N1,m1)

Corollary: if c does not exist then m′ not reachable
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Non-TFGizable polyhedral reduction
Token Flow Graphs
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a2 = a1 + p5
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Non-TFGizable polyhedral reduction
Token Flow Graphs
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E6 ≜
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p2 + a4 = 4096
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Prevalence of reductions over the MCC instances
Token Flow Graphs
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Previous context
Project and Conquer

Definition (E -Transform Formula)

F2(p2) ≜ ∃p1. Ẽ (p1,p2) ∧ F1(p1) is the E -transform of F1

Theorem (Reachability Conservation)

F1 reachable in N1 if and only if F2 reachable in N2

▶ Not suitable with random exploration
(need to evaluate a quantified formula for each visited state)

▶ Not usable with standard model-checkers
(only support quantifier-free formulas on the set of places)

We introduce a procedure to eliminate quantifiers in F2 (EXPSPACE in general)
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F2(p2) ≜ ∃p1. Ẽ (p1,p2) ∧ F1(p1) is the E -transform of F1

Theorem (Reachability Conservation)

F1 reachable in N1 if and only if F2 reachable in N2

▶ Not suitable with random exploration
(need to evaluate a quantified formula for each visited state)

▶ Not usable with standard model-checkers
(only support quantifier-free formulas on the set of places)

We introduce a procedure to eliminate quantifiers in F2 (EXPSPACE in general)



48/73

Previous context
Project and Conquer

Definition (E -Transform Formula)
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Running example
Project and Conquer

a2p0 p2 p3

p7

p5 a1

p8

p6

p4 4096

p1

F1 ≜ (3p7 + 2p8 ⩾ p6) ∧ (p8 ⩾ p1)
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Running example
Project and Conquer
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p8

p6

p4 4096

p1

3 p7 + 2 p8 − p6 ⩾ 0
p8 − p1 ⩾ 0

3 p7 + 2 p8 − (p0 + p2 + p3 + p5 + p7) ⩾ 0
p8 − p1 ⩾ 0
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Running example
Project and Conquer
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Running example
Project and Conquer

a2p0 p2 p3

p7
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p4 4096

p1

2 a1 − 1 p5 − p0 − p2 − p3 ⩾ 0
1 a1 + 0 p5 − p4 − 4096 ⩾ 0

2 a2 − p0 − p2 − p3 ⩾ 0
1 a2 − p4 − 4096 ⩾ 0

polarized: a1 variable with the highest coefficient in both literals
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Running example
Project and Conquer

a2p0 p2 p3

p7

p5 a1

p8

p6

p4 4096

p1

3 p7 + 2 p8 − p6 ⩾ 0
p8 − p1 ⩾ 0

2 a2 − p0 − p2 − p3 ⩾ 0
a2 − p4 − 4096 ⩾ 0

F2 ≜ (2a2 ⩾ p0 + p2 + p3) ∧ (a2 ⩾ p4 + 4096)
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If not polarized?
Project and Conquer

▶ under-approximation: If m2 |= F2 then ∃m1 s.t. m1≡E m2 and m1 |= F1

▶ over-approximation: If m1 |= F1 then ∃m2 s.t. m1≡E m2 and m2 |= F2

In practice, 80% of the formulas are polarized!
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Workflow
Project and Conquer

Net
reduction

(N1,m1)

TFG
construction

E

Fast
elimination

JEK

F1(p1)

Model checking

▶ Random walk

▶ k-induction

▶ TAPAAL

Net: (N2,m2)

Formula: F2(p2)

⊤ or ⊥
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Performance of fast elimination
Project and Conquer
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Gains with k-induction: 50% ⩽ reduction ratio ⩽ 100%
Project and Conquer
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Gains with k-induction: 1% ⩽ reduction ratio ⩽ 50%
Project and Conquer
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Gains with TAPAAL: challenging queries
Project and Conquer
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Undecidability
Proving Polyhedral Equivalence

Theorem
The problem of checking a statement (N1,m1)≡E (N2,m2) is undecidable.

Proof.
▶ When E ≜ True: equivalent to the marking equivalence problem

▶ Undecidable from [Hack 76]
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Challenges and proposal
Proving Polyhedral Equivalence

Challenges:

▶ More general notion of equivalence with a complete procedure

▶ Presburger sets of initial markings C1, C2

Proposal:

▶ Parametric polyhedral equivalence, (N1,C1) ≊E (N2,C2)

▶ SMT constraints that ensure the equivalence
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Parametric nets
Proving Polyhedral Equivalence

y1

τ

y2

a b

c

≊x = y1 + y2 x

a b

c

Equivalence rule [concat], (N1,C1) ≊E (N2,C2)
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Parametric nets
Proving Polyhedral Equivalence

y1

τ

y2

a b

cd

≊x = y1 + y2 x

a b

cd

σ1 ≜ d σ2 ≜ d ·b

Equivalence rule [concat], (N1,C1) ≊E (N2,C2)
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Parametric nets
Proving Polyhedral Equivalence

y1

τ

y2

a b

c

≊x = y1 + y2 x

a b

c

τ transitions may be irreversible choices
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Parametric nets
Proving Polyhedral Equivalence

y1

τ

y2

a b

c

≊x = y1 + y2 x

a b

c

C1 ≜ (y2 = 0) C2 ≜ True

Equivalence rule [concat], (N1,C1) ≊E (N2,C2)
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Silent state-spaces
Proving Polyhedral Equivalence

To prove (N1,C1) ≊E (N2,C2) we need to express m
ϵ
=⇒m′ with m |= C1 or m |= C2

Definition (Coherent net (N,C))

If m
σ
=⇒m′ with m ∈ C then ∃m′′ ∈ C . m

σ⟩
=⇒m′′ ∧m′′ ϵ

=⇒m′.

A Presburger predicate, say τ∗C such that

Rτ (N,C ) = {m′ | m′ |= ∃x . C (x) ∧ τ∗C (x , x
′)}

Theorem
Given a parametric E-abstraction equivalence (N1,C1) ≊E (N2,C2), the silent
reachability sets Rτ (N1,C1) and Rτ (N2,C2) are Presburger-definable.
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Flatness
Proving Polyhedral Equivalence

Theorem (Leroux, 2013)

For every VASS V , for every Presburger set Cin of configurations, the reachability
set ReachV(Cin) is Presburger if, and only if, V is flattable from Cin.

If candidate correct: we have methods to compute τ∗C (thanks FAST)
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Decidability
Proving Polyhedral Equivalence

Theorem
The problem of checking a statement (N1,C1) ≊E (N2,C2) is decidable.

Proof.

▶ (N1,C1) ≊E (N2,C2) holds iff |= (Core 0) . . . |= (Core 3)

▶ Presburger arithmetic is decidable

▶ τ∗C can be computed using FAST if nets are flat

▶ Flat ↔ Presburger-definable (decidable [Hauschildt 90][Lambert 94])
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▶ Flat ↔ Presburger-definable (decidable [Hauschildt 90][Lambert 94])
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Parametric equivalence instantiation
Proving Polyhedral Equivalence

Theorem (Parametric E -abstraction Instantiation)

Assume (N1,C1) ≊E (N2,C2) is a parametric E-abstraction. Then,

m1≡E m2 ∧m1 |= C1 ∧m2 |= C2 =⇒ (N1,m1) ≡E (N2,m2)
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Performance evaluation
Proving Polyhedral Equivalence

▶ Proved our rules in less than 1 s ([red], [agg], [concat], etc.)

▶ Tested unsound rules → return which constraint failed
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Performance evaluation: SwimmingPool
Proving Polyhedral Equivalence

WaitBag Undress InBath Dress Dressed

15

Bags

10

Cabins

20

OutEntered

E ≜


Cabins + Dress + Dressed + Undress +WaitBag = 10
Dress + Dressed + Entered + InBath + Out + Undress +WaitBag = 20
Bags + Dress + InBath + Undress = 15

Proving time: 11 s
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Open science

▶ Making papers accessible
▶ HAL, arXiv

▶ Experimenting on accessible benchmarks
▶ Model Checking Contest

▶ Producing available tools and artifacts
▶ Open source tools available on GitHub
▶ Conference artifacts: TACAS, FM, VMCAI
▶ Artifact accompanying my manuscript

▶ Participating in competitions
▶ Model Checking Contest (2021 – 2023)

Creative Commons
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Model Checking Contest (2021 – 2023)

30%
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20
20

20
21

20
22

20
23

BVT

enPAC

GreatSPN

ITS−Tools

LoLA

smpt

Tapaal

tedd

2021: BMC & PDR (coverability)

2022: Added standard methods

2023: Projection (+5.5%)
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[Petri Nets, 23]

▶ We use a set of simple reductions, which are surprisingly efficient to reduce the
net size when used together.



71/73

Contributions

Polyhedral Reduction

Token Flow Graphs Concurrency Relation Computation

Computing Invariance Certificates

Project and Conquer

Proving Polyhedral Equivalences

SM
PT

Ko
ng

O
ct
an
t

Re
du
ct
ro
n

[Petri Nets, 21][TACAS, 22][FM, 23][FI]

[SPIN 21][Petri Nets, 22][STTT][ToPNoC]

[VMCAI 24]

[Petri Nets, 23]

▶ Reductions generate linear equations which characterize the state space
(partially or totally).
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▶ We defined methods, and data structures, to transfer problems between the
initial and the reduced net. For the concurrency relation computation,
complexity is linear in the size of the output.
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▶ We developed new SMT-based methods that works as well on bounded as
unbounded nets, and that provides certificate of invariance.
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▶ Unexpected: quantifier elimination and automated proving.
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▶ A toolbox composed of four open-source tools
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Perspectives

▶ Reachability problem
▶ Easy at a first glance, but has picked the interest of researchers for decades

▶ Plenty of room to develop new semi-procedures and improve existing ones

▶ SMT-solvers are too general
▶ Specific solvers taking into account the underlying model
▶ Continue to explore relation with Presburger arithmetic
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