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General context

» Verification of concurrent systems
» Model checking [Emerson and Clarke, 80] [Queille and Sifakis, 82]

Does an abstract model satisfy a formal specification?
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The SmallOperatingSystem example

FreeMemSegment

startLoading

81ii/

freeMemory

startFirst

endLoading

LoadingMem

Di

8192

TaskOnDisk

Controllg

TaskReady
CPUY,

it

Executing Task

4096

startl

iallOperatingSystem
Net

Type: P,

Origin: Academic MCC 2015

This Jorm fs @ summary descriptin of the maodel eniiled SrmallOperatingSystem™ proposed for the Model Checking
Contest 8 Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets con|
e accompanie by one or many equivalent, wnfolded P/T nets. Models are given together with property il (possibly,
one per model nstance) giving o set of properties to be checked on the model.

Description

etr net madels a simpliied Operating System handling the execntion of tasks on a machine with several so-called
ry segments", Disk controllr units, and cores. The typical lfcycle of  task is the folloving:

1 A askis Ioaded from disk to memory (vequires a segment and a disk controler),

2 When the task is ready to exceute, it can got a core, be suspended and got a core again as ong as its exceution is not
finishod. 1t can also bo removed from the memry i some i needed otherwise

3 When the execution finishes, the task is saved back on the disk.

“The system has several scaling parameters: M (memory sogments), T (tasks), D (Disk controllrs) and C (cores). However,
10 simplify this in the MCC, we reduce i MT and DC with M=T=NT,

D =DC and € =2 DC.

Graphical epresentation for MT16 and DC =8

Scaling parameter

Parametor name
MT and DO

Parametor description
T 1o compite avallable Tasks and morn:
ory and DC to compute avaiable disk con-
trolers and cores

Chosen parameter values

(UT=s192, DC=2048), (T=8192, DC=0%6)

Page Lo senerted o Apri 15, 2029

Fabrice Kordon
Fabrice. Kordon@lipé.fr
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The SmallOperatingSystem example

Is

FreeMemSegment

startLoading TaskOnDisk

@
LoadingMem

endLoading

freeMemory

startFirst

DidControlleyUnit

4096

TaskReady
CPUMAIt  startNext

Executing Task

endUnload

Transfer ToDisk

startUnload

TaskSuspended

suspend

" Executing Task > TaskOnDisk” reachable from the initial marking?
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The SmallOperatingSystem example

FreeMemSegment

startLoading TaskOnDisk

@
LoadingMem

endLoading

freeMemory

startFirst

DidControlleyUnit

4096

TaskReady
CPUMAIt  startNext

Executing Task

State space ~ 107

endUnload

Transfer ToDisk

startUnload

TaskSuspended

suspend

2/73



Techniques

> State-space construction
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» Partial Order Reductions, symmetries, etc.
» Not adapted for reachability problems and cannot handle unbounded nets
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Techniques

> State-space construction

» Decision Diagrams
» Partial Order Reductions, symmetries, etc.
» Not adapted for reachability problems and cannot handle unbounded nets

» Portfolio of methods

» SMT-based model checking (thanks to the progress of the solvers)

» Counter-examples: BMC
» Invariants: k-induction, CEGAR, PDR

» Optimizations
» Structural reductions, slicing, etc.

Our approach is complementary!
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A polyhedral framework for reachability problems in Petri nets
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Petri nets

A strength of Petri net theory is the ability to reuse results from linear algebra, and
linear programming techniques, to reason on it:
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Petri nets

A strength of Petri net theory is the ability to reuse results from linear algebra, and
linear programming techniques, to reason on it:

» Potentially reachable markings, aka the State Equation

m=1Il.o0c+ mg

» Place invariants
ol 1=0
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Petri nets
Some transition t enabled at m when m = ENBL;(p):

ENBL:(p) £ )\ (pi > Pre(t, pi))

i€l..n

We have m — m’ if and only if m, m’" = T(p, p’):

T(p.p’) = Vie7 ENBLe(p) A Ae(p, P')

where the token displacement is defined as:

Ai(p,p') & Ajer.n (P = pi + Post(t)(p;) — Pre(t)(p;))
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Petri nets
Some transition t enabled at m when m = ENBL;(p):

ENBL:(p) £ )\ (pi > Pre(t, pi))

i€l..n

We have m — m’ if and only if m, m’" = T(p, p’):

T(p.p’) = Vie7 ENBLe(p) A Ae(p, P')

where the token displacement is defined as:

Ai(p,p') & Ajer.n (P = pi + Post(t)(p;) — Pre(t)(p;))

In general the relation m —* m’ cannot be encoded in the Presburger arithmetic

Same formalism for semantics and properties
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A polyhedral framework for reachability problems in Petri nets
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Reachability properties verification

» F reachable if and only if 3m € R(N, mg) such that m |= F
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Reachability properties verification

» F reachable if and only if 3m € R(N, mg) such that m |= F

» F invariant if and only if Vm € R(N, mg) we have m = F

T L

EF F = —(AG—F) EF F Witness  Non-reachable
AGF Invariant Counter-example
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Some properties of interest

» Coverability: COVER(p, k) = m(p) > k
» Reachability: REACH(p, k) = m(p) =k
> Quasi-liveness: QLIVE(t) = A .., COVER(p, pre(t, p))

> Deadlock: DEAD = A —QLIVE(t)
teT
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Reachability problems

» Decidable [Mayr, 1981] [Kosaraju, 1982] [Lambert, 1992]
... but still no complete and efficient method.
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Reachability problems

» Decidable [Mayr, 1981] [Kosaraju, 1982] [Lambert, 1992]
... but still no complete and efficient method.

» Difficult (Ackermann-complete) [Czerwiniski et al., 2022] [Leroux, 2022]

> Many tools
» [TS-Tools

> LolLA

> TAPAAL

» KReach

» FastForward

| 2
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A polyhedral framework for reachability problems in Petri nets
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Net reductions [Berthelot, 76]

A reduction is a net transformation which reduces its size such that (for a given set of
properties) the reduced net is equivalent to the initial one.

(N, mg) = (N, m()

A reduction is characterized by:
» (Graph) transformation

» Application of conditions

» The preserved properties: boundedness; deadlock; quasi-liveness; reachability; . ..
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Polyhedral reductions

A polyhedral reduction is a net transformation which reduces its size such that we can
reconstruct the state space of the initial net from the reduced one.

(N, mo) =E (/V/7 m6)

A polyhedral reduction is characterized by:
» A Presburger predicate, E, of linear constraints between places.
» (Graph) transformation
» Application of conditions
> The preserved properties: beundedness; deadloek; quasi-liveness; reachability; . ..
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SmallOperatingSystem

p1 = ps + 4096
E 23 Ps = po + p2 + p3+ ps + pr
ay = pr+pg

a =ai+ ps
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AirplaneLD-PT-0050

Flane_0On_Ground_Signal_ne_F
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AirplaneLD-PT-0050

Flane_on_Ground_Signal_no_F

E contains about 400 variables and literals
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AirplaneLD-PT-0050

Flane_0On_Ground_Signal_ne_F

AirplaneLD-PT-4000: 30000 variables and literals
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SwimmingPool

Cabins

Cabins + Dress + Dressed + Undress + WaitBag = 10
E £ { Dress + Dressed + Entered + InBath + Out + Undress + WaitBag = 20
Bags + Dress 4 InBath + Undress = 15
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Benchmark (Model Checking Contest)

The Model Checking Contest is important in my work:
» A great source of model instances! = 1400 nets

» Also a source of reachability formulas &~ 50000 queries
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Benchmark (Model Checking Contest)

The Model Checking Contest is important in my work:
» A great source of model instances! = 1400 nets

» Also a source of reachability formulas ~ 50000 queries

> Software development: from prototypes to tools that can be reused by others
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Outline

1. Two new definitions
2. Two contributions

3. Epilogue
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Outline

(9@‘2 (Polyhedral Reduction) (Computing Invariance Certificates)

{\o&o (Token Flow Graphs)—)(Concurrency Relation Computation)
& 4

Cp? (Prqéctand Conque{)
& 4

b"é (Proving Polyhedral Equivalences)

(2
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Outline
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Big picture

Polyhedral Reduction

Yy
X
(Nh, my) °
TH+y=2
y
1 o °
I
a xr
0
(N, m2) ‘ ;
——— ¢
Net reduction example, with E:a=x+y 0 1

Relation between state-spaces
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Markings equivalence up-to E
Polyhedral Reduction

» Two markings m; and m, are compatible:

my(p) = my(p) for all pin PN P,
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Markings equivalence up-to E
Polyhedral Reduction

» Two markings m; and m, are compatible:
my(p) = my(p) for all pin PN P,
» A marking m can be associated to system of equations m defined as:
pr=m(p1) A--- A px = m(px) where P ={p1,...,px}

» We denote m; =g m, when:

E A my A my is satisfiable
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Polyhedral equivalence
Polyhedral Reduction

s

Definition (Relaxed E-equivalence)
(N1, m1) =g (N2, my) if and only if

(A1) initial markings are realated up-to E: my =g mo;

(A2a) for all markings m in R(Ny, m1) or R(N2, m2): E A m is satisfiable;

(A2b) assume m}, m) are markings of Ny, Ny related up-to E, such that
my =g m), then m] is reachable iff m) is reachable.
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Polyhedral equivalence
Polyhedral Reduction

Definition (Relaxed E-equivalence)

(N1, m1) =g (N2, my) if and only if
(A1) initial markings are realated up-to E: my =g mo;
(A2a) for all markings m in R(Ny, m1) or R(N2, m2): E A m is satisfiable;

(A2b) assume m}, m) are markings of Ny, Ny related up-to E, such that
my =g m), then m] is reachable iff m) is reachable.

We have two variant definitions:
» Composition (relies on observation sequences)

> Automated proving
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Key results: reachability checking
Polyhedral Reduction

Lemma (Reachability checking)
For all pairs of markings m’, m}, of Ny, No such that mj =g m):

if my € R(No, mp) then m} € R(Ny, my).

m
o >
_ /\ z+y=2
mi1 =g My , / ,
: Ym) . mi =g m}
o e
* X
meo 4



Key results: invariance checking
Polyhedral Reduction

Lemma (Invariance checking)
For all m} in R(Ny, my) there is m} in R(Na, m2) such that m| =g m).

mi \ml
: 7%
: y
— / /! — /
m1=g M2 dmy .my=p my 0t
: 1 ° °
4
% x . :
ma "m, o
40
0 Loa=2



Deriving polyhedral reductions — Step 1
Polyhedral Reduction
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Deriving polyhedral reductions — Step 1
Polyhedral Reduction

[ E1 £ py = psy + 4096 ]
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Deriving polyhedral reductions — Step 2
Polyhedral Reduction
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Place invariant: ps = po + p2 + p3 + ps + p7
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Deriving polyhedral reductions — Step 2
Polyhedral Reduction

[ E> 2 ps=po+ p2+ p3+ ps + pr ]
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Deriving polyhedral reductions — Step 3
Polyhedral Reduction
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Deriving polyhedral reductions — Step 3
Polyhedral Reduction

Rule [acc]: agglomerate places p; and ps into a new place
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Deriving polyhedral reductions — Step 3
Polyhedral Reduction

EE3

2a1=pr+ps J
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Deriving polyhedral reductions — Step 4
Polyhedral Reduction
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Deriving polyhedral reductions — Step 4
Polyhedral Reduction

Rule [CONCAT]: concatenate a; and ps into a new place

27/73



Deriving polyhedral reductions — Step 4
Polyhedral Reduction

[ Es2a=2a1+ps ]

27/73



Deriving polyhedral reductions — Step 4
Polyhedral Reduction

=F
p1 = ps + 4096
EN Ps = po+ p2 + p3+ ps+ pr
ai = pr+ps

a =ai+ ps
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Composition laws
Polyhedral Reduction

Reduction rules: [RED], [AGG], [CONCAT], ...

Laws:
» Composability (congruence for ||-composition)
» Transitivity
» Relabeling

29/73



Prevalence of reductions over the 1426 MCC instances
Polyhedral Reduction

100

80

60

40

Reduction ratio (%)

20

600 800 1000 1200 1400
Number of instances
» 80% of instances are reduced by > 1%

» Half of them are significantly reduced (reduction ratio > 30%)
» 14% of fully reducible instances
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Prevalence of reductions over the 1426 MCC instances
Polyhedral Reduction

Reduction ratio (%)

600 800 1000 1200 1400
Number of instances

How to combine with the reachability problem?
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Combination with reachability
Polyhedral Reduction

>
» |s F; reachable in (Ni, m;1)? F 2 { 3p7 +2ps = ps

ps = p1
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Combination with reachability
Polyhedral Reduction

» |s F; reachable in (Ny, my)?

Fli{ 3pr+2ps = ps
ps = p1

Definition (E-Transform Formula)

Formula F2(p,) 2 3py. E(p1, p2) A Fi(py) is the E-transform of Fi.
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Combination with reachability
Polyhedral Reduction

>
» |s F; reachable in (Ny, my)? F 2 { 3p7 +2ps = ps

ps = p1

Definition (E-Transform Formula)
Formula Fa(p,) 2 3q4. E(qq,p2) A Fi(qy) is the E-transform of F.

g1 = ga + 4096 Po = qo
=qgo+ g2+ g3+ 3gs+qr P2 = q2 3g7 + 2gs
Fr23q,...q5.3ay. 4 7D A /\{
2 70, -+ G- = ap = g7 +gs p3 = Q3 gs

a =air+qge P4 = qs

Z e
Zq1
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Combination with reachability
Polyhedral Reduction

>
» |s F; reachable in (Ny, my)? F 2 { 3p7 +2ps = ps

ps = p1

Definition (E-Transform Formula)
Formula Fa(p,) 2 3q4. E(qq,p2) A Fi(qy) is the E-transform of F.

g1 = ga + 4096 Po = qo
=q+q+qg3+gs+q7 P2 = G2 3g7 + 2¢s
Fr23q,...q5.3ay. 4 7D A /\{
2 70, -+ Ge- 241 ap = g7 +gs p3 = Q3 gs
a =air+qge P4 = qs

» Is the E-transform formula F; reachable in (N, my)?

Z e
Zq1
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Fundamental results on E-transform formulas
Polyhedral Reduction

Theorem (Reachability Conservation)
F1 is reachable in Ny if and only if its E-transform formula F, is reachable in No.
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Fundamental results on E-transform formulas
Polyhedral Reduction

Theorem (Reachability Conservation)
F1 is reachable in Ny if and only if its E-transform formula F, is reachable in No.

Corollary (Invariant Conservation)

—F1 invariant on Ny if and only if =F5 invariant on Ns.

Does it fit well with SMT-based methods?
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Bounded Model Checking (BMC) [Biere, 99]

Polyhedral Reduction
1. ¢o = mo(p®)

- @
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Bounded Model Checking (BMC) [Biere, 99]

Polyhedral Reduction
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Bounded Model Checking (BMC) [Biere, 99]

Polyhedral Reduction
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Bounded Model Checking (BMC) [Biere, 99]

Polyhedral Reduction

1. ¢o = mo(p®) doAFp Q) -sat unsat
2. ¢1 2 ¢ AT(pO, p(V)) doAFpL))-sat unsat
3. ¢i 2 ¢y AT(pli—1 p() oi A F(p1) sat

i

If ¢i(N1) A Fi sat in Ny then there is j < i such that ¢;(N2) A Fp sat in N
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Performance evaluation: 50% < reduction ratio < 100%

Polyhedral Reduction
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Performance evaluation: 1% < reduction ratio < 25%

Polyhedral Reduction
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Computation time without reduction (s)

x1.22 computed queries
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Outline

")@Q (Polyhedral Reduction> CComputing Invariance Certificates)

+o°éo (Token Flow Graphs}—)(Concurrency Relation ComputatiorD
& : 4

Cp? (Prqectand Conque{)
& 1A

b\’é (Proving Polyhedral Equivalences)
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SmallOperatingSystem
Token Flow Graphs

p1 = ps + 4096
E 23 Ps = po+ p2 + p3+ ps+ pr
ap = pr+ pg

a =ar+ ps
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Motivation
Token Flow Graphs

P> Reason on graphs instead of solving Presburger formulas

» Capture the particular structure of constraints from polyhedral reductions

p1 = ps + 4096

E 2 3a,. Ps = po+ p2+ p3+ ps+ p7
ay=pr+ps
a =a+ ps
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Motivation
Token Flow Graphs

P> Reason on graphs instead of solving Presburger formulas
» Capture the particular structure of constraints from polyhedral reductions

» Directed Acyclic Graph (DAG) with two kinds of arcs

p1 = ps + 4096

E 2 3a,. Ps = po+ p2+ p3+ ps+pr
ay=pr+ps
a =a+ ps
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Construction
Token Flow Graphs

p1 = p4 + 4096
Ja; P6 = po + p2 + p3 + ps + pr
") ar=p7r+ps

a = a1+ ps

ONOCR®),

ONO
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Construction
Token Flow Graphs

p1 = ps + 4096
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Construction
Token Flow Graphs

p1 = ps + 4096
Ja; Pe = po + p2 + p3 + ps + pr
ay = p7 + ps

ax = a1+ ps
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Construction
Token Flow Graphs

p1 = ps + 4096
= Pe = po + p2 + p3 + ps + pr
] ai=pr+ps

a =ai1+ ps
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Configuration of a TFG

Token Flow Graphs

» Configuration c: partial function from set of nodes V to N
» Well-defined: c A E is satisfiable

» Total: defined for all nodes
40/73



Configuration reachability

Token Flow Graphs

Is m’ reachable from the initial marking?

Po = 8184
P1 = 8192
p2 =

p3 =0

ps = 4096
ps =

pe = 8190
pr =

ps =2
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Configuration reachability
Token Flow Graphs

po = 8184
P1 = 8192
p2 =
p3=0

pa = 4096
ps =5

pe = 8190
pr=1

ps =2
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Configuration reachability
Token Flow Graphs

( po = 8184
p1:8192
pp=0
p3 =0

m 2 ps = 4096
ps =5
pe = 8190
pr=1

L ps =2

Theorem (Reachable marking extension and unicity)

If m" is a marking in R(Ny, my) then there exists a unique, total and well-defined
configuration ¢ of [E] such that ¢y, = m.
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Configuration reachability
Token Flow Graphs

( po = 8184
p1:8192
p2:
p3 =0

m 2 ps = 4096
ps =5
pe = 8190
pr=1

L ps =2

Theorem (Reachable marking extension and unicity)

If m" is a marking in R(Ny, my) then there exists a unique, total and well-defined
configuration ¢ of [E] such that ¢y, = m.

Corollary: if ¢ does not exist then m’ not reachable 42/73



Configuration reachability
Token Flow Graphs

( po = 8184
p1:8192
p2=0
ps =0

m 2 p, = 4096
ps =5
pe = 8190
pr=1

L ps =2

Theorem (Reachability equivalence)

Given a total, well-defined configuration c:
v, € R(Na, mp) if and only if ¢, € R(Ny, my)

42/73



Non-TFGizable polyhedral reduction

Token Flow Graphs

p1 = ps + 4096
EN Ps = po+ p2 + p3+ ps+ pr
ap = pr+ pg

a =ar+ ps
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Non-TFGizable polyhedral reduction

Token Flow Graphs

EES
Esé{ a3 =ax+p3
as = ps + p3
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Non-TFGizable polyhedral reduction

Token Flow Graphs
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Non-TFGizable polyhedral reduction

Token Flow Graphs

a3

Live Marked Graph: state equation is exact!
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Non-TFGizable polyhedral reduction

Token Flow Graphs

E 2 as+po+p2 =8192
6~ po+as = 4096
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Prevalence of reductions over the MCC instances
Token Flow Graphs

100 T T T T T
I Best possible reduction with Reduce
[ Reduction leading to a well-formed TFG
80
S
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j
c
.0
5 40
o
Q
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0
0 200 400 600 800 1000 1200 1400
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Previous context

Project and Conquer

Definition (E-Transform Formula)
F2(py) 2 3py. E(p1, py) A Fi(py) is the E-transform of Fy
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Previous context

Project and Conquer

p
Definition (E-Transform Formula)
F2(py) 2 3py. E(p1, py) A Fi(py) is the E-transform of Fy
|

p
Theorem (Reachability Conservation)

F1 reachable in Ny if and only if F, reachable in N,
-

> Not suitable with random exploration
(need to evaluate a quantified formula for each visited state)

» Not usable with standard model-checkers
(only support quantifier-free formulas on the set of places)

We introduce a procedure to eliminate quantifiers in F, (EXPSPACE in general)
48/73



Running example

Project and Conquer

F1 = (3p7 +2ps = ps) A (ps = p1)
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Project and Conquer

3pr + 2ps — ps =0
pg — p1 =0

!

3pr + 2pg — (po+p2tp3t+ps+pr) =0
ps — p1 =0
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Running example

Project and Conquer

2p7 + 2pg — po — p2 — p3 — ps 20
pg — p1 =0

2p7 + 2pg — po — P2 — P3 — ps >0
ps — (p4—‘r4096) >0
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Running example

Project and Conquer

2p7 + 2pg — po — p3 — ps
lpg — p1
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Running example

Project and Conquer

2p7 + 2pg — po — - p3 — pg 20
Op; + 1lpg — pg — 4096 >0

!
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Running example

Project and Conquer

2p7 + 2pg — po — P2
Opr + 1lps — pg — 4096

|
o
w
|
©
(6]
VWV
oo

polarized: pg variable with the highest coefficient in both literals
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Running example

Project and Conquer

2p7 + 2pg — pp — p2 — p3 — ps =20

Op; + 1pg — ps — 4096 >0
2a3, — pp — p2 — p3 — ps =0
131 — Ps — 4096 20

polarized: pg variable with the highest coefficient in both literals
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Running example

Project and Conquer

2a3 — lps — po — - p3
la; + Ops — pg — 4096

!

VWV
co

49/73



Running example

Project and Conquer

polarized: aj variable with the highest coefficient in both literals 20/73



Running example

Project and Conquer

222 — po — P2 — P3
lay — ps — 4096

=0
=0

polarized: aj variable with the highest coefficient in both literals 20/73



Running example

Project and Conquer

2a3 — po — P2 — p3
an — Ps — 4096

Fy £ (2a2 > po + p2 + p3) A (a2 > pa + 4096) 49/73



If not polarized?

Project and Conquer

» under-approximation: If my = F, then 3my s.t. my=g my and m; = A

» over-approximation: If m; = F; then 3mp s.t. my =g mp and mp = F;
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If not polarized?

Project and Conquer

» under-approximation: If my = F, then 3my s.t. my=g my and m; = A

» over-approximation: If m; = F; then 3mp s.t. my =g mp and mp = F;

In practice, 80% of the formulas are polarized!

50/73



Workflow

Project and Conquer

Net: (No, m
(N, my) —! Net' (N2, my)
reduction ‘
E
Model checking
» Rand Ik
TFG | a.n omiwa e Torl
construction » k-induction
> TAPAAL
[E]
Fast Formula: F2(ps) [
Fl(Pl) —> .. .
elimination
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Workflow

Project and Conquer

Net: (No, m
(N, my) —! Net' (N2, my)
reduction ‘
E
Model checking
» Rand Ik
TFG | a.n omiwa e Torl
construction » k-induction
> TAPAAL
[E]
Fast Formula: F2(ps) [
Filp1) = . 7.
elimination
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Performance of fast elimination

Project and Conquer

100
\E; 10 7
g
S —— Redlog
g 1 — sl Octant:  99.5%
E Octant isl: 61%
= . 0,
e 01 Redlog: 33%
=
'_

0.01

T T T
0 5000 10000 15000 20000
Number of computed projections
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Workflow

Project and Conquer

Net: (No, m
(/\/1,m1)—> Net' ( 2 2)
reduction |
E
Model checking
» Random walk
TFG . . . — T or L
construction » k-induction
» TAPAAL
[E]
Fast Formula: F2(ps) ‘
Filp1) = . 7.
elimination
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Gains with k-induction: 50% < reduction ratio < 100%

Project and Conquer
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Gains with k-induction: 1% < reduction ratio < 50%

Project and Conquer
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Workflow

Project and Conquer

N —>
(N, m) reduction ‘
E
Model checking
» Rand [k
TFG | a.n omiwa e Torl
construction » k-induction
» TAPAAL
[E]
F Fé(P2) [
Fi(p) —| | 2%
elimination
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Gains with TAPAAL: challenging queries

Project and Conquer

Time limit per query (s)

1000 3
100 5
10 4
—— Original
14 Projected
0 100 200

Number of computed queries

300

ITS-Tools

LoLA TAPAAL
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Undecidability

Proving Polyhedral Equivalence

Theorem
The problem of checking a statement (N1, m1) =g (N2, m2) is undecidable.
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Undecidability

Proving Polyhedral Equivalence

( Theorem }

The problem of checking a statement (N1, m1) =g (N2, m2) is undecidable.
-

Proof.

» When E £ True: equivalent to the marking equivalence problem
» Undecidable from [Hack 76]

59/73



Challenges and proposal

Proving Polyhedral Equivalence

Challenges:
» More general notion of equivalence with a complete procedure

» Presburger sets of initial markings C;, G

Proposal:
» Parametric polyhedral equivalence, (N1, C1) =g (No, &)

» SMT constraints that ensure the equivalence

60/73



Parametric nets

Proving Polyhedral Equivalence
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Parametric nets

Proving Polyhedral Equivalence

A
02 = a
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Parametric nets

Proving Polyhedral Equivalence

a N
o1 =a g2
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Proving Polyhedral Equivalence
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Parametric nets

Proving Polyhedral Equivalence
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Parametric nets

Proving Polyhedral Equivalence

or 2 d
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Parametric nets

Proving Polyhedral Equivalence

o1 2d or 2 d
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Parametric nets

Proving Polyhedral Equivalence

o1 2d or 2 d-b
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Parametric nets

Proving Polyhedral Equivalence

T transitions may be irreversible choices
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Parametric nets

Proving Polyhedral Equivalence

G 2 (yp=0) Co £ True

Equivalence rule [cONCAT], (N1, Gi) =g (N2, (2)

61/73



Silent state-spaces

Proving Polyhedral Equivalence

To prove (N, Ci) =g (Na, Co) we need to express m = m’ with m = C; or m = G

Definition (Coherent net (N,C))
If m= m’ with m e C then Im” € C . m%m”/\m”ém’.
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Silent state-spaces

Proving Polyhedral Equivalence

To prove (N, Ci) =g (Na, Co) we need to express m = m’ with m = C; or m = G

Definition (Coherent net (N,C))
If m= m’ with m e C then Im” € C . m%m”/\m”ém’.

A Presburger predicate, say 7¢ such that

R(N,C)={m" | m" E3x. C(x)ATE(x,x")}

Theorem
Given a parametric E-abstraction equivalence (Ny, C1) =g (N2, G), the silent
reachability sets R-(Ny, C1) and R-(Na, C3) are Presburger-definable.

62/73



Flatness

Proving Polyhedral Equivalence

Theorem (Leroux, 2013)

For every VASS V/, for every Presburger set C;, of configurations, the reachability
set ReachV(Cj,) is Presburger if, and only if, V is flattable from Ci,.
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Flatness

Proving Polyhedral Equivalence

Theorem (Leroux, 2013)

For every VASS V/, for every Presburger set C;, of configurations, the reachability
set ReachV(Cj,) is Presburger if, and only if, V is flattable from Ci,.

If candidate correct: we have methods to compute 75 (thanks FAST)
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Decidability

Proving Polyhedral Equivalence

Theorem
The problem of checking a statement (Ny, C1) =g (N2, C,) is decidable.
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Decidability

Proving Polyhedral Equivalence

-
Theorem
The problem of checking a statement (Ny, C1) =g (N2, C,) is decidable.

.

Proof.
» (Ni, Gi) =g (N2, (o) holds iff = (Core 0) ... = (Core 3)
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Decidability

Proving Polyhedral Equivalence

g
Theorem
The problem of checking a statement (Nyi, C1) =g (Na, (3) is decidable.

-

Proof.
» (Ni, Gi) =g (N2, (o) holds iff = (Core 0) ... = (Core 3)

» Presburger arithmetic is decidable

64/73



Decidability

Proving Polyhedral Equivalence

g
Theorem
The problem of checking a statement (N1, C1) =g (Na, C;) is decidable.

-

Proof.
» (Ni, Gi) =g (N2, (o) holds iff = (Core 0) ... = (Core 3)

» Presburger arithmetic is decidable

» 7¢ can be computed using FAST if nets are flat

64/73



Decidability

Proving Polyhedral Equivalence

p
Theorem
The problem of checking a statement (N1, C1) =g (Na, C;) is decidable.

-

Proof.
» (Ni, Gi) =g (N2, (o) holds iff = (Core 0) ... = (Core 3)

» Presburger arithmetic is decidable
» 7¢ can be computed using FAST if nets are flat
» Flat <> Presburger-definable (decidable [Hauschildt 90][Lambert 94])
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Parametric equivalence instantiation

Proving Polyhedral Equivalence

Theorem (Parametric E-abstraction Instantiation)
Assume (N, C1) =g (N2, C2) is a parametric E-abstraction. Then,

m =g my Am ): Cl A mop ): C2 —— (Nl,ml) =F (Nz,mg)
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Performance evaluation

Proving Polyhedral Equivalence

» Proved our rules in less than 1 s ([RED], [AGG], [CONCAT], etc.)

» Tested unsound rules — return which constraint failed
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Performance evaluation: SwimmingPool

Proving Polyhedral Equivalence

WaitBag

Entered Undress

Cabins + Dress + Dressed + Undress + WaitBag = 10
E £ { Dress + Dressed + Entered + InBath + Out + Undress + WaitBag = 20
Bags + Dress + InBath + Undress = 15

Proving time: 11 s
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Open science

> Making papers accessible
» HAL, arXiv

Creative Commons
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> Making papers accessible
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» Experimenting on accessible benchmarks
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» Producing available tools and artifacts

» Open source tools available on GitHub
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. . : Creative Commons
» Artifact accompanying my manuscript
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Open science

> Making papers accessible
» HAL, arXiv

» Experimenting on accessible benchmarks
» Model Checking Contest

» Producing available tools and artifacts

» Open source tools available on GitHub
» Conference artifacts: TACAS, FM, VMCAI
» Artifact accompanying my manuscript

» Participating in competitions
» Model Checking Contest (2021 — 2023)

Creative Commons
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Model Checking Contest (2021 — 2023)

100%

20%

80%
70%
60%
50%
40% V_/—V\v—v
30% & &) N > v >
I S
® BVT v GreatSPN A LoLA -+ Tapaal
& enPAC O ITS-Tools X smpt = tedd

2021: BMC & PDR (coverability)

2022: Added standard methods

2023: Projection (+5.5%)
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Contributions

A
(’§§ Polyhedral Reduction (Computing Invariance Certificates)
[Petri Nets, 21][TACAS, 22][FM, 23][FI]
{\oﬁ\% (Token Flow Graphs)—)(Concurrency Relation Computation)

[SPIN 21][Petri Nets, 22][STTT][ToPNoC]

X
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Contributions

3 - - - —
(§ Polyhedral Reduction (Computmg Invariance Certlﬁcates)
[Petri Nets, 21][TACAS, 22][FM, 23][FI]
{_006" (Token Flow Graphs)—)(Concurrency Relation ComputatiorD
[SPIN 21][Petri Nets, 22][STTT][ToPNoC]
X
Ob’bo Project and Conquer [VMCAI 24]
&
2>°é CProving Polyhedral Equivalences) [Petri Nets, 23]
©

> We use a set of simple reductions, which are surprisingly efficient to reduce the
net size when used together.
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Contributions

< - - - =

(§ Polyhedral Reduction (Computmg Invariance Certlﬁcates)
[Petri Nets, 21][TACAS, 22][FM, 23][FI]
{_00% (Token Flow Graphs)—)(Concurrency Relation ComputatiorD
[SPIN 21][Petri Nets, 22][STTT][ToPNoC(]

N -
05'@ Project and Conquer [VMCAI 24]

&
2>°é CProving Polyhedral Equivalences) [Petri Nets, 23]
&

» Reductions generate linear equations which characterize the state space
(partially or totally).
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Contributions

A
&§Q Polyhedral Reduction (Computing Invariance Certificates)
[Petri Nets, 21][TACAS, 22][FM, 23][FI]
\L\o‘\% <Token Flow Graphs)—)(Concurrency Relation Computation>

[SPIN 21][Petri Nets, 22][STTT][ToPNoC]

X

> We defined methods, and data structures, to transfer problems between the
initial and the reduced net. For the concurrency relation computation,
complexity is linear in the size of the output.
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Contributions

i< - - . —
(§ Polyhedral Reduction (Computmg Invariance Certmcates)
[Petri Nets, 21][TACAS, 22][FM, 23][FI]
{_006" (Token Flow Graphs)—)(Concurrency Relation ComputatiorD

[SPIN 21][Petri Nets, 22][STTT][ToPNoC]

o Project and Conquer [VMCAI 24]

» We developed new SMT-based methods that works as well on bounded as
unbounded nets, and that provides certificate of invariance.
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Contributions

N
(’)§2 Polyhedral Reduction (Computing Invariance Certificates)
[Petri Nets, 21][TACAS, 22][FM, 23][FI]
\l\é‘% (Token Flow Graphs)—)(Concurrency Relation ComputatiorD

[SPIN 21][Petri Nets, 22][STTT][ToPNoC]

X

» Unexpected: quantifier elimination and automated proving.
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Contributions

N
%§ Polyhedral Reduction (Computing Invariance Certificates)
[Petri Nets, 21][TACAS, 22][FM, 23][FI]
{\o‘\é" (Token Flow Graphs)—)(Concurrency Relation ComputatiorD

[SPIN 21][Petri Nets, 22][STTT][ToPNoC]

X

» A toolbox composed of four open-source tools
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Perspectives

> Reachability problem
» Easy at a first glance, but has picked the interest of researchers for decades

> Plenty of room to develop new semi-procedures and improve existing ones
» SMT-solvers are too general

» Specific solvers taking into account the underlying model
» Continue to explore relation with Presburger arithmetic
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Questions?

R Polyhedral Reduction Computing Invariance Certificates
NG ) (Conpue )
[Petri Nets, 21][TACAS, 22][FM, 23][FI]
{\o&o (Token Flow Graphs)—)(Concurrency Relation Computation)
[SPIN, 21][Petri Nets, 22][STTT][ToPNoC]
& : 4
O(”& (PI’OJeCt and Conquer) [VMCAI, 24]
& 4
b"é (Proving Polyhedral Equivalences) [Petri Nets, 23]
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