A Toolchain to Compute Concurrent Places of Petri Nets

Abstract

The concurrent places of a Petri net are all pairs of places that may simultaneously have a token in some reachable marking. Concurrent places generalize the usual notion of dead places and are particularly useful for decomposing a Petri net into synchronized automata executing in parallel. We present a state-of-the-art toolchain to compute the concurrent places of a Petri net. This is achieved by a rich combination of various techniques, including: state-space exploration using BDDs, structural rules for concurrent places, quadratic over- and under-approximation of reachable markings, and polyhedral abstraction of the state space based on structural reductions and linear arithmetic constraints on markings. We assess the performance of our toolchain on a large collection of 850 nets originating from the 2022 edition of the Model Checking Contest.

Publication
Petri Nets and Other Models of Concurrency
Nicolas Amat
Nicolas Amat
Postdoctoral researcher

Postdoctal researcher at the IMDEA Software Institute on Presburger arithmetic.

Related