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Abstract

The Vertics team at LAAS-CNRS has been developing a new approach
for the symbolic model checking for years, i.e., a method to represent ex-
actly the state-space of a system without enumerating it exhaustively. This
study’s originality consists in the verification of properties on a Petri net N
from a reduced net N', as well as a system of linear equations E linking
these two nets.

This study focuses on the adaptation of SAT methods such as BMC and
PDR into SMT methods to verify efficiently different properties on non-
safe Petri nets by taking advantage of these nets reductions.

After defining the reductions used, this study defines a new notion of equiv-
alence to prove the soundness of these reduction rules.

This study is also interested in the decomposition of Petri nets into sub-
net called NUPNSs, introduced by the Convecs team from INRIA. This de-
composition requires the computation of concurrency relations between the
places composing the net. This work proposes a promising method to an-
swer this question on large nets by treating the reduction equations.

Résumé

L’équipe Vertics du LAAS-CNRS développe depuis quelques années une
nouvelle approche pour le model checking symbolique, c’est-a-dire une
méthode permettant de représenter exactement I’espace d’état d’un systeéme
sans devoir I’énumérer de maniere exhaustive. L’originalité de cette étude
consiste en la vérification, de propriétés sur un réseau de Petri N a partir
d’un réseau réduit N, ainsi qu’un systeme d’équations linéaires E liant ces
deux réseaux entre eux.

Cette étude se concentre sur I’adaptation de méthodes SAT telles que BMC
et PDR en des méthodes SMT pour vérifier efficacement différentes pro-
priétés sur des réseaux de Petri non saufs en tirant parti de ces réductions
de réseaux.

Apres avoir défini les réductions utilisées, cette étude définit une nouvelle
notion d’équivalence afin de prouver la correction de ces regles de réduc-
tion.

Cette étude s’intéresse également a une question de décomposition de ré-
seaux de Petri en sous-réseaux appelés NUPNSs, introduite par 1’équipe
Convecs de I'INRIA. Cette décomposition nécessite le calcul de relations
de concurrence entre les places composant le réseau. Ce travail introduit
une méthode prometteuse afin de répondre a cette question sur de grands
réseaux en traitant les équations de réduction.
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. [
Introduction

To overcome the increasing complexity of critical systems, it is necessary to improve
the methods and tools used in system engineering. Complex systems nowadays, such
as satellites, nuclear power plants, or airplanes, rely on control software comprised
of several million lines of code. A bug on one of these systems can be a human and
financial disaster. We can cite some classical examples of “computer disasters”. In June
1996, the crash caused by an integer overflow of the European Ariane 5-missile cost
more than 500 million US$. The European Space Agency did not detect the error due
to a lack of proper integration test with realistic acceleration value as it would occur.
Several other historical examples, but also a string of success stories [Garavel, 2012],
have raised interest in the use of formal methods to help avoid similar problems in the
future.

Figure 1.1: Ariane 5 Figure 1.2: Ariane 5 crash, 1996

The appeal of using formal methods, and of formal verification techniques in particu-
lar, is to provide rigorous mathematical techniques to verify some properties (correct
behavior) on software or hardware systems. Indeed, many complex systems cannot be
fully tested, their state-space is often too big to enumerate all the scenarios that can oc-
cur, and their complexity far-exceeds what any individual engineer can manage on their
own.

Verification tools can be divided into three main categories:



* Automated theorem proving: formal proofs of the program, usually based on
the use of a specific logical system and with the support of a proof assistant,

* Model checking: verification of the behavioral properties of a system by explor-
ing its possible states, where properties may be expressed using a temporal logic,

* Static analysis techniques, such as abstract interpretation for instance, that relies
on an analysis of program code, without execution, generally by computing an
over-approximation of the program behavior.

During my internship at LAAS, I have studied and developed new methods and algo-
rithms for the model checking of systems modeled as Petri nets. I have also imple-
mented some of these new ideas into a prototype tool called SMPT.

1.1 Model Checking Overview

Model Checking is a formal method for checking whether a model of a system meets
a given specification [Baier and Katoen, 2008, Clarke et al., 1999]. A (property) speci-
fication describes the properties of interest, in other words, what the system should do
and the characteristics it should have. A model defines the idealized behavior of the
system and how it interacts with the external world. This technique is used at the differ-
ent stages of systems development (design, architecture, etc.) and is based, roughly, on
exploration over all the states that the system can take. In my work, I focus on reach-
ability properties (sometimes also called safety properties), meaning properties on the
states that the system can reach.

Model Checking is composed of three main elements to perform verification:

A property specification language, that is a mathematical formalism to describe
the properties that the designed system must verify. Different temporal logic can
be used, such as LTL (Linear Temporal Logic) or CTL (Computation Tree Logic).

* A behavioral specification language, that is a formalism to describe the system
and its behavior. A model-checker can work with different formalisms such as
automata, transition system, Petri net, and many others.

* A verification technique, that is a method to prove that the system satisfies the
given properties or return a counter-example if it is not the case. Besides “tradi-
tional” enumerative techniques, two main approaches can be found: the first one
based on the use of decision diagrams (such as Binary Decision Diagrams, BDD,
for example); and a second one based on SAT solvers.

Nowadays, we have sophisticated academic and industrial tools [Kordon et al., 2019]
that can be used to model-check systems. During my work, I have mostly focused on
the TINA model-checking toolbox [LAAS-CNRS, 2020], developed by the Vertics team
at LAAS.



1.2 Petri Nets

Petri nets, also called Place/Transition (P/T) nets, are a mathematical model of concur-
rent systems defined by Carl Adam Petri. The idea is to describe the state of a system
using places, containing tokens. A change of state of the system is represented by tran-
sitions. Places are connected to transitions by arcs. If a condition on the number of
tokens in the inputs places is met, the transition can fire, in this case some tokens are
removed from the input places, and some are added to the output places. Basically,
places are a representation of the states, conditions, and resources of a system, while
transitions symbolize actions. A complete formalization of Petri nets can be found in
[Murata, 1989] and [Diaz, 2009].

Syntax

A Petrinet N is a tuple (P, T, pre,post) where P = {p1,...,p,} is a finite set of places,
T = {11,...,t} is a finite set of transitions (disjoint from P), and pre: T — (P — N)
and post : T — (P — N) are the pre- and post-condition functions (also called the flow
functions of NV). A state m of a net, also called a marking, is a mapping m : P — N which
assigns a number of tokens, m(p), to each place p in P. A marked net (N,my) is a pair
composed from a net and an initial marking mg. In the following, we will often consider
that each transition is associated with a label (a symbol taken from an alphabet ¥). In
this case, we assume that a net is associated with a labeling function / : T — XU {7},
where 7 is a special symbol for the silent action name. Every net has a default labeling
function Iy such that £ = T and Iy(t) = ¢ for every transition ¢ € T

Useful Notations

The pre-set of a transition ¢t € T is denoted *t = {p € P | pre(t, p) > 0}, respectively the
post-set of a transition ¢ is denoted t* = {p € P | post(¢,p) > 0}. We call pre(z, p) and
post(z, p) the weight of the arc between p and ¢. A Petri net is called ordinary when the
(non-zero) weights on all arcs are equal to 1. These notations can be extended to the
pre-set and post-set of a place p, with *p = {r € T | post(z,p) >0} and p* ={r € T |
pre(z,p) > 0}.

Given a set of constants A, we define the set of finite sequences on A to be the free
monoid A*, where € stands for the “empty sequence”. We will use s - s” for the concate-
nation operation between sequences, that we should often write 5.

In the remainder of this report, we will use the two notations A — B and B interchange-
ably, for the set of functions from A to B.

Reachability Graph

A transition ¢ € T is enabled at marking m € N” when m(p) > pre(t, p) for all places
p in P. (We can also simply write m > pre(t), where > stands for the component-wise
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comparison of markings.) A marking m’ € N¥ is reachable from a marking m € N¥ by

firing transition #, denoted m Lom! , if: (1) transition ¢ is enabled at m; and (2) m’ =

m — pre(t) + post(z). By extension, we say that a firing sequence 6 =t ...t, € T* can

be fired from m, denoted m = n?, if there exists markings my, . .., m, such that m = my,
/ fit+1 .

m' = m, and m; — m;, for all i < n.

We denote R(N,m) the set of markings reachable from m in N. A marking m is k-
bounded when each place has at most k tokens; property A ,cpm( p) <k is true. Like-
wise, a marked Petri net (N,myg) is bounded when there is k such that all reachable
markings are k-bounded. A net is safe when it is 1-bounded. In our work, we consider
generalized Petri nets (in which net arcs may have weights larger than 1) and we do not
restrict ourselves to bounded nets.

The reachability graph is the rooted, directed graph, denoted G(N,my), such that, the
set of vertices is Ry(my), the root is mg, and we have an edge from m to m’, labeled by

t, if and only if m = m'.

Observable Sequence

We can extend the notion of labels to sequences of transitions in a straightforward way.
Given a relabeling function, /, we can extend it into a function from 7% — £* such that
l(e)=¢,l(tr)=¢€and l(ct) =1(0)l(t). Given a sequence of labels ¢ in X*, we write
(N,m)=> (N,m’) when there is a firing sequence p in T* such that (N,m) L2 (N,m')
and o = [(p). We say in this case that o is an observable sequence of the marked net
(N,m).

We define a final operation on sequences that will be useful. Given an observable se-
quence o, we denote O|y the projection of the sequence on X, that is the sequence
obtained by erasing all labels that are not in X, such that gy = ¢, (0a)y =0 ifa ¢ X
and (0a) |y = (0)za otherwise.

Given two observable sequences 6] and 0,, we say that o and ¢, are compatible over
the alphabet X, denoted 0] ~y 0, when they have equal projections on X, that is: 0|z =

(03] |z

Graphical Syntax

We use the standard graphical notation for nets, where places are depicted as circles
and transitions as squares. In the example of Fig. 1.3 (left), transition fq is fireable,
because place pg has a token. The same net, right, depicts the evolution after firing
transition #9. We give another, more complex example of net in Fig. 1.4, that is taken
from [Stahl, 2011].



Po Po
) To
121 121
(a) 1y fireable (b) 1y fired

Figure 1.3: Basic example of the behavior of a Petri net
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Figure 1.4: An example of Petri net

Extensions

Different extensions of standard Petri nets have been defined in order to increase the
expressiveness of the model. Two extensions are treated in our study [Busi, 1998]:

* Inhibitor arc: an inhibitor arc with weight k between a place, p, and a transition,
t, can be used to express an inhibition constraint between p and ¢. In this case,
transition ¢ is enabled in a marking m only when m(p) <k,

* Read arc: a read arc with weight k between a place, p, and a transition, ¢ (also
called a test arc), is equivalent to the combination of an incoming and an outgoing
arc with weight k (such that pre(z, p) = k and post(¢, p) = k); that is, it is enabled
when the marking of p is at least k and the marking of p does not change when ¢
fires. Read arcs do not add any expressive power, but it can be useful to identify
them when we reason about transitions as equations between integer vectors.
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1.3 SAT/SMT Solving

Our approach is focused on SMT (Satisfiability Modulo Theory) solving to prove
properties on the reachable markings of a net. One of the main references
about the algorithms implemented in the state-of-the-art SAT and SMT solvers is
[Kroening and Strichman, 2008].

SAT Problem

A SAT solver is a software that answers questions about the satisfiability of Boolean
formulas.

A Boolean formula is composed of variables, x,y,... that can take one of two possible
values: either true (denoted T) or false (denoted ). Some basic operations can be
performed between variables: conjunction (and) denoted as A, disjunction (or) denoted
as V, and negation (not) denoted as — (or sometimes simply X when it is applied to a
variable).

A formula ¢ can be evaluated to frue or false when we fix the values of its variables.
If a certain assignment of variables s evaluates the formula ¢ to true, we say that ¢ is
satisfiable (SAT) and s is a model (denoted as s |= ¢). If there is no assignment such that
¢ 1s SAT, we say that ¢ is UNSAT. On the opposite, if all evaluations satisfy ¢, we say
that ¢ is valid (denoted as |= ¢).

SMT Extension

It is not possible to use Boolean formulas to reason about nets that are unbounded. In
general, places can contain more than one token and, in the case of non-ordinary nets,
we must encode conditions using inequalities between integers. That is why we will be
using SMT solvers, like z3 [Bjgrner, 2020], in our approach.

We use the standard language for SMT solvers named SMT-LIB 2. A full documentation
can be found in [Barrett et al., 2017]. The main advantage of using the SMT-LIB format,
instead of using the API of the solver, is to be independent of a single solver. Hence it
should be possible to adapt our results to work with other solvers supporting the SMT-
LIB format.

Markings Seen as Systems of Equations

We can define many properties on the markings of a net N using Boolean combinations
of linear constraints with integer variables (what is called the QF-LIA theory in SMT-
LIB). Assume that we have a marked net (N,mq) with set of places P = {py,...,pn}.
We can associate a marking m over P to the formula m(xy,...,x,), below. Formula m is
obviously a conjunction of literals, what is called a cube in [Bradley, 2011].

m(xy,..., %) = (xp =m(p1)) A+ A (xx = m(py)) (1.1)

6



In the remainder, we use the notation ¢(X) for the declaration of a formula ¢ with
variables in ¥, instead of the more cumbersome notation ¢ (xy,...,x,). We also simply
use ¢ (V), instead of ¢{x; <— vi}...{x, < v, }, for the substitution of X with V in ¢.
We should often use place names as variables (or parameters) and use p for the vector
(p1,---,pn)- We also simply use m instead of m(p).

We say that a marking m satisfies a property ¢, denoted m |= ¢, when formula ¢ Am(p)
is satisfiable. In this case ¢ may use variables that are not necessarily in P. We can
use this approach to reframe many properties on Petri nets. For instance the notion of
safe markings, described previously: a marking m is safe when m = SAFE, (p), where
SAFEL(X) £ Ajer.n(xi < k).

Likewise, the property that transition 7 is enabled corresponds to formula ENBL,(X) =

Nic1..n(xi > pre(t;, p)), in the sense that ¢ is enabled at m when m |= ENBL, (7). Another
example is the definition of deadlocks, which are characterized by formula DEAD(X) =
Nier "ENBL;(X). We give other examples in Chapter 2 and Chapter 5, when we encode
the transition relation of a Petri net using formulas.






I,
Motivations

A significant focus in model checking research is finding algorithmic solutions to avoid
the “state explosion problem”, that is finding ways to analyse models that are out of
reach from current methods. The goal of this study is to explore a new technique that
we call polyhedral model checking, in reference to the polyhedral, or polytope model,
used in program optimization and static analysis [Besson et al., 1999, Feautrier, 1996].

The Vertics team is working on a new approach for the symbolic model checking of Petri
nets that relies on the combined use of reductions and “‘state equations”, see for example
[Berthomieu et al., 2019]. By symbolic, we mean a method capable of computing the
state-space of a system without enumerating all its states exhaustively. This method is
based on representing some reduction constraints, expressed as a set of linear equations
on the places of a net. When possible, instead of analysing a net N, we analyse a reduced
net, N, and generate a system of equations E linking markings in the two nets.

2.1 Net Reductions

We consider nets reductions of the form (Nj,E,N;), where N; is the initial net, N,
the reduced net, and E a system of linear equation. This relation is formally defined in
Chapter 4 of this report, where we define a new notion of equivalence denoted N| > g N,,
that we named a polyhedral abstraction.

The main idea is to decrease the size of the net N; by preserving some properties, such
as the reachability graph. With our approach, we know how to reconstruct a partition of
the states reachable in N from the states reachable in N,.

The concept of reductions between nets has been introduced in [Berthelot, 1987] and
is known as structural reduction. It is still a topic of interest in recent works such as
structural reductions implemented in ITSTools [Thierry-Mieg, 2020b]. The approach
in [Berthomieu et al., 2018, Berthomieu et al., 2019], considered in this study, permits
to reconstruct the state-space of N; as explained before. More powerful reductions can
be applied when we are interested by less general properties, such as the detection of
deadlocks for instance. Several tools use reductions for checking reachability properties.

9



TAPAAL [Bgnneland et al., 2019], for instance, is an explicit-state model checker that
combines reductions and partial-order reduction techniques and can apply them on Petri
nets with weighted arcs and inhibitor arcs.

We consider two main kinds of reductions (and so equations) detailed in
[Berthomieu et al., 2018, Berthomieu et al., 2019, Berthelot, 1987]: removal of redun-
dant transitions and places and agglomeration of places.

In some cases, a Petri net can be fully reducible, i.e, the set of places P and the set of
transitions 75 of the reduced net N, are empty (P = 7> = 0). An empty-net has only one
marking and no transitions.

We can schematize this approach by the Figure 2.1, in which the top state-space (corre-
sponding to Np) is obtained as the tesselation of a finite set of polyhedra (the pre-image
of states from N, by the system of equations E).

36 states

6 states

Figure 2.1: Polyhedral reduction representation

The implementation of this technique has shown its effectiveness in practice. In par-
ticular, it has been used to compute the reachable states of many use cases that where
considered as beyond reach so far.

2.2 Properties Verification

We use our concept of reduction equations to automatically check properties on the
initial system, Ny, from an analysis of the reduced net, N>. In this context, a possible
approach is to transform the proof into the verification of an invariant on the set of
reachable states of N,. We use a SMT solver to check, at the same time, the conditions
on the invariant and on the reduction equations E.

10



In this work, we focus on a subset of the properties defined for the Model Checking
Contest, see for instance [Amparore et al., 2019, Hillah and Kordon, 2017, LIP6, 2020],
that are safety properties on the reachable markings of a marked net (N, mg). Examples
of the property that we want to check include: checking if some transition ¢ is enabled
(commonly known as quasi-liveness); checking if there is a deadlock; checking whether
some invariant between place markings is true; . .. We consider the proof of both formu-
las, AGF (true only when every marking m € R(N,my) is a model of F), and EFF (true
if there is some m such that m = F).

Place reachability corresponds to the satisfiability of property REACH(p):

COVER(p,k) = m(p) >k 2.1)
REACH(p) = m(p)>1 (2.2)

We can define a notion of quasi-liveness, or “event reachability”, that is similar to state
reachability but for transitions. We say that a transition ¢ is live if there is a reachable
marking m such that m L. We can extend this property to a set of transitions {71,...,t,}.
Again, checking the liveness of a transition, say #, can be reduce to checking the satisfi-
ability of a conjunction over the set of reachable markings, that is:

LIVE!(r) = )\ COVER(p,pre(t,p)) (2.3)
pE*t

We are also interested in the verification of deadlocks. A deadlock is a state of the
system in which the system cannot fire any transition, and so is blocked. The dead-
lock problem is a common problem in concurrent computing, operating system, and
communication system.

DEAD = /\ —LIVE(r) (2.4)

teT

We describe in Chapter 5 two main methods, called BMC and PDR, for checking the
properties that we just defined. During my work, I have also studied a problem related
to the decomposition of Petri nets into a hierarchical structure of safe sub-nets, called
NUPNSs [Garavel, 2019a]. Computing a NUPN decomposition requires to compute a
“concurrency relation” between places in the net, where two places p; and p; are said
concurrent if property REACH(p;) AREACH(p;) is satisfiable. One of the contribu-
tions of my work is to propose a new method for finding pairs of concurrent places, see
Chapter 6.

2.3 Contributions and Structure of the Report

I have made a number of contributions during my internship. All the methods defined or
improved during my work have been implemented on a prototype model-checker called

Property LIVE is often referred to as quasi-liveness in the literature.
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SMPT that is based on a SMT approach. This tool includes two popular approaches for
model-checking transition systems that I have updated in order to handle generalized
nets (markings are not necessarily 1-safe and edges can have weights larger than 1) and
also reductions (see Chapter 5). On a more theoretical-side, we defined a “principled”
method for using reductions rules used and defined a method to prove the correctness
of the approach based on a new notion of E-abstraction equivalence (see Chapter 4).
Another contribution of this project was to apply our approach on the Concurrent Places
Problem (see Chapter 6).

The report is organized as follows:

Chapter 3 gives a brief State-of-the-Art on symbolic model-checking methods by pre-
senting two main approaches.

Chapter 4 contains the theoretical part of my work and includes the formalization of net
reductions and the notion of net equations. It also introduces a new equivalence relation
that is used in our proofs.

Chapter 5 is a technical description of the two main methods implemented in our model-
checker: BMC and PDR. algorithms, as well as their extension to reductions. We also
describe a simpler approach, called “enumerative”, that can be surprisingly efficient
when the net can be almost totally reduced.

Chapter 6 describe how we can apply our work to solve the Concurrency Places Prob-
lem. It introduces a new method, which takes advantage of net reductions, in order to
compute the concurrency matrix of very “large nets”.

Chapter 7 contains experimental results obtained with SMPT and that we used to vali-
date our approach.

Chapter 8 is the conclusion of the report. It also presents some perspectives for future
works.

12



3
State-of-the-art

Several verification techniques have been developed in order to overcome, at least par-
tially, the state explosion problem. Some of these techniques can be grouped into the
category called symbolic model checking. Instead of enumerating the whole state-space
exhaustively, state by state, we encode and manipulate “groups of states” using a sym-
bolic representation. Many different kinds of symbolic representations can be used:
logical formulas, binary decision diagrams (BDD) or other related data structures, etc.

3.1 Binary Decision Diagrams

A Binary Decision Diagram or BDD is a data structure that permits to represent a
Boolean function, and therefore sets of Boolean vectors, in a compact way. Assum-
ing a state s is a vector of Boolean value of size n (s € B"), the idea is to represent a set
of states by a Boolean formula f : B” — B, such that f(s) is true if and only if 5 is in the
set. In the following, we use O for false and 1 for the truth value.

A BDD with variables X = {xj,...,x,} is a directed acyclic graph with two terminal
nodes, labeled with O and 1, where all non-terminal node is labeled with a variable in
X. Each such node has exactly two outgoing nodes, labeled with 0 and 1 respectively.
These edges correspond to an assignment for the variable labeling the node. We display
a graphical version of a BDD in Fig. 3.1, where dashed lines denote 0-edges and solid
lines denote 1-edges. Many approaches work with a constrained version of BDD, called
Reduced Ordered BDD (ROBDD), where the order of the variables along a path in the
graph is fixed and such that isomorphic nodes (same variables and same outgoing nodes)
are merged. Given an order on the variables of X, the ROBDD associated with a set is
unique. A nice property of ROBDD is that it is possible to check equivalence between
Boolean sets/functions in linear time (in the size of the input ROBDDs) and satisfiability
in constant time.

Figure 3.1 is a BDD encoding of the Boolean formula a A (=b V ¢). Figure 3.2 is the
ROBDD for the same formula and the variable ordering (a < b < ¢).

The first model-checker to use BDDs was SMV [Burch et al., 1992, Bérard et al., 2001].
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Figure 3.1: BDD Figure 3.2: ROBDD

This is, for instance, the model-checker used for the verification of the IEEE Future+
cache coherence protocol [Garavel, 2012], which is one of the breakthroughs in the
area of formal verification. Many state-of-the-art model-checkers today use BDD-like
structures (called decision diagrams) to encode set of states and state transitions. For
example, there are extensions of decision diagrams that can encode sets of values taken
from a finite set (for example a bounded interval of integers).

3.2 SAT and SMT

Another approach for symbolic model checking is to encode set of states (and also tran-
sitions relations) into logical formulas. These logic can include more complex theories
than the Booleans, such as linear arithmetic for example. Given a logical specification
of a property, verification can be handled using SAT or SMT solvers.

An efficient method to find counter-examples is Bounded Model Checking or BMC
[Biere et al., 1999]. The idea is to unroll transitions until we reach a state that does
not satisfy the property. This method is good at answering questions of the form: “is
there a marking falsifying the property reachable in k transitions from the initial mark-
ing?”. The problem with this approach is that is is not always possible to know a bound
for the value of k. Therefore, when the property is always true (we say it is an invariant),

the BMC methods do not terminate.

One of the extensions of BMC is k-induction [de Moura et al., 2003]. It is a generaliza-
tion of induction to k transitions. In addition to finding counter-examples, this method is
able to prove invariants. Another more efficient technique, that is also complete, is based
on the use of interpolation. See for example the Interpolation-based Model Checking
(IMC) of [McMillan, 2003].

One of the most recent SAT/SMT based method is called Property Directed Reachability
(PDR). This approach is also known as /C3, which stands for Incremental Construction
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of Inductive Clauses for Indubitable Correctness [Bradley, 2011]. This method is based
on a combination of induction and over-approximations. The interest of this method is
that the analysis is split into many “simple” problems.

We provide a partial implementation of PDR that is correct and complete when the
property is monotonic (see Chapter 5), even in the case of nets that are not bounded.
This temporary solution' can be understood as a restriction to the case of “coverabil-
ity properties”. This seems to be the current state of the art with Petri nets; see for
example [Esparza et al., 2014] or the extension of PDR to “well-structured transition
systems” [Kloos et al., 2013]. We can also mention the works on inductive procedure
for infinite state and/or parametrized systems, such as the verification methods used in
Cubicle [Conchon et al., 2012], or in [Cimatti et al., 2016, Gurfinkel et al., 2016].

In this report, I describe my results when extending both the BMC and PDR methods to
the verification of generalized Petri nets (therefore not only on 1-safe nets) and taking
into account reductions.

3.3 Model Checking Contest (MCC)

The Model Checking Contest [Amparore et al., 2019] is an annual competition where
tool developers can compare the efficiency of their model-checkers, and therefore (par-
tially) the effectiveness of the algorithms and implementation techniques that they use.
The competition is composed of several categories, such as StateSpace or Reachability.

The new approach developed by the Vertics team, which combines the use of
reductions and “state equations”, is one of the reasons behind the victory of
TINA [LAAS-CNRS, 2020] in the StateSpace during the last edition of the contest
[Amparore et al., 2019].

The tool used in this competition, called tedd, uses a combination of Set Decision Di-
agrams and reduction equations [Berthomieu et al., 2019]. We should not use decision
diagram in this report, since my goal was to try an approach mixing SMT solvers (see
below) and reductions. Nonetheless, for future works, I plan to study a combination of
SMT solvers with decision diagrams.

3.4 Use of Systems of Linear Equations and the
Polyhedral Approach

My work relies on several results about systems of linear equations with solutions over
the positive integers. The set of solutions of these system are convex sets of N”, also
called polyhedra. I also work with the union (disjunction) of such systems. These
systems are commonly used in the domains of linear programming and convex opti-
mization. They also occur frequently when studying Petri nets, which are equivalent in

'We have several ideas for improving our current implementation of PDR.

15



many ways to “Vector Addition Systems with States” (VASS), for instance when study-
ing invariants. For instance, a large part of my approach relies on SMT solvers that
support procedures for satisfiability modulo Linear Integer Arithmetic.

While I use results and tools that deal with linear system, I did not work on this domain
during my internship and I did not try to adapt the existing tools and techniques to my
particular use case. This could be part of my future work.

There are many domains of theoretical computer science where convex sets are impor-
tant, including for formal verification. For instance, they are used as abstract domains
in Abstract Interpretation [Cousot and Halbwachs, 1978]. See for example the work on
the APRON numerical abstract domain library. They also play a central role in the au-
tomatic parallelization of programs [Feautrier and Lengauer, 2011]. Closer to my work,
Difference Bound Matrices (DBM), are a special class of convex structures that have
been used for the model checking of a time extension of Petri nets. Besides Time Petri
nets, DBM are heavily used for the analysis of Timed Automata. I am certain that there
are many interesting ideas, coming from these different domains, that could be used in
my project.
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4

Reachability Equivalence and
Net-Abstractions

We define a new notion, called E-abstraction equivalence, that is used to state a corre-
spondence between the set of reachable markings of two Petri nets “modulo” some lin-
ear system of equations, E. Basically, we have that (Ny,m ) is E-equivalent to (Np,m;)
when, for every sequence m; 2 nt, in N,, there must exist a sequence m; = m) in Nj
such that E Am) Amb) is satisfiable (and reciprocally). Therefore, knowing E, we can
compute the reachable markings of Ny from those of N, and vice versa. We also ask for
the observable sequences, 07 and 0> in this case, to be equal. As a result, we will prove
that our equivalence is also a congruence.

We can illustrate these notions using the two nets Mi,M; in Fig. 1.4, we have that
m| £ pox3 ps*2 pex3 is reachable in M| and Ey Am entails (a2 = 3) A (a3 = 3), which
means that marking m’2 £ ay%3 az*3 psx2 pex3 is reachable in M,. Conversely, we have
several markings in M that corresponds to the constraint Eyy Am) = (p2 = p1+ pa) A
(3=Po+p1+p3) N3 =po+pi+ps) N(ps=2)A(pe =3). All these markings
are reachable in M) using the same observable sequence bece. More generally, each
marking m, of N, can be associated to a convex set of markings of N, defined as the
set of positive integer solutions of E Am). Moreover, these sets form a partition of

R(Ny,my). This motivates our choice of calling this relation a polyhedral abstraction.

b3 b D5

a3
2 2 2

t:
T P T ’
t to .

yz
a Po a
to tg
T D2 c as c 6

2 123 Do \@—» ts

Figure 4.1: An example of Petri net, M; (left), and one of its polyhedral abstraction, M,
(right), with Ey = (p2 = p1+ pa) A (a2 = po + p1 + p3) Aaz = po+ p1 + pa).

b b5
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While our approach does not dictate a particular method for finding pairs of equivalent
nets, we propose an automatic approach based on the use of net reductions. When the
net N; can be reduced, we will obtain a resulting net (N,) and a condition (E) such
that N, is a polyhedral abstraction of N;. In this case, E will always be expressed as
a conjunction of equality constraints between linear combination of integer variables
(the marking of places). This is why we should often use the term reduction equations
when referring to E. Our goal is to transform any reachability problem on the net N;
into a reachability problem on the (reduced) net N,, which should hopefully be simpler
to check.

4.1 Satisfiability Conditions on the Systems of
Equation

Before defining our equivalence more formally, we need to introduce some constraints
on the condition, E, used to correlate the markings of two different nets. We say that
a pair of markings (mj,my) are compatible (over respective sets of places P, and P»)
when they have equal marking on their shared places, meaning m;(p) = my(p) for all
p in PrNP,. This is a necessary and sufficient condition for formula m; A m; to be
satisfiable. When this is the case, we denote m| & m; the unique marking in (P} U P,)
such that (m; Wmy)(p) = m(p) if p € P; and (my Wmy)(p) = ma(p) otherwise. Hence,
with our conventions, m; Wmy < my Ama.

In the following we ask that condition E be solvable for Py, P>, meaning that for all
markings m; over P; there must exists at least one marking m, over P>, compatible
with my, such that m; Wm, = E (and reciprocally). While this property is not essential
for most of our results, it simplifies our presentation and it will always be true for the
reduction equations generated with our method. On the other hand, we do not prohibit
to use variables in E that are not in P; U P,. Actually, such situation will often occur in
practice, when we start to chain several reductions.

4.2 E-Abstraction Equivalence

We start by defining a notion of E-abstraction. An E-abstraction equivalence is an
abstraction in both directions.

Definition 4.1 (E-abstraction equivalence). Assume Ni,N, are two Petri nets with re-
spective sets of places Py, P, and labeled functions ly,l;, over the same alphabet ¥. We
say that the marked net (Na,my) is a E-abstraction of (Ny,m,), denoted (Ny,m;) Jg
(N2,mp), if and only if:

(A1) system E is solvable for P;,P, and the initial markings are compatible with E,
meaning my Wmy = E.
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(A2) for all observation sequences 6 € £* such that (Ny,my) = (N1,m)) then for all
marking ml over Py such that my Wiy |= E we have (Ny,my) => (Na,ni).

We say that (Ny,m,) is E-equivalent to (Ny,m,), denoted (Ny,m) >g (Na,mp), when
we have both (Ny,m;) Jg (Na,my) and (Np,my) Jg (Ny,my).

Notice that condition (A2) is defined only for sequences starting from the initial mark-
ing of N;. Hence the relation is usually not true on every pair of matching markings;
it is not a simulation. By definition, relation >g is symmetric. We deliberately use a
“comparison symbol” for our equivalence, [>, in order to stress the fact that N, should
be a reduced version of Nj. In particular, we expect that |P,| < |P;|.

4.3 Basic Properties of Polyhedral Abstraction

We prove that we can use E-equivalence to check the reachable markings of Ny simply
by looking at the reachable markings of N,. We give a first property that is useful in
the context of bounded model checking, when we try to find a counter-example to a
property by looking at firing sequences with increasing length. Our second and third
properties are useful for checking invariants, and is at the basis of our implementation
of the PDR method for Petri nets.

Lemma 4.1 (Bounded Model Checking). Assume (Ny,m;) >g (Np,my). Then for all
m) in R(Ny,my) there is m, in R(N2,my) such that m\ Wm/, = E.

Proof. Since m is reachable, there must be an observable sequence ¢ in N; such that
(N1,m1) = (N1,m}). By condition (A1), system E is solvable. Hence there must be
some marking m), over P, compatible with m}, such that m} Wm/, = E. By condition
(A2), we have that (N,,m;) = (N2,m,). Therefore we have m, reachable in N, such
that m) Wm), = E. O

Lemma 4.1 can be used to find a counter-example ), to some property F in Ny, just
by looking at the reachable markings of N,. Indeed, it is enough to find a marking m/,
reachable in N, such that m), = E A —F. This is the result we use in our implementation
of the BMC method (see Lemma 5.2). Our second property can be used to prove that
every reachable markings of N, can be traced back to at least one marking of N; using
the reduction equations. (While this mapping is surjective, it is not a function, since a
state in Ny could be associated with multiple states in N;.)

Lemma 4.2 (Invariance Checking). Assume (Ny,m) >g (Na,mp). Then for all pairs of
markings m'y,m5 over Ni,Ny such that m} Wm), |= E and m) € R(N2,my) it is the case

that m| € R(Ny,my).
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Proof. Take m',m/, a pair of markings in Ni,N, such that m| Wm) = E and m) €
R(N>,my). Hence there is an observable sequence G such that (Ny,my) = (Np,mb).
By condition (A2), since m)| Wm) |= E, we have that (Ny,m;) = (Ny,m). Hence
m'IER(Nl,ml). ]

The last result (see Th. 4.1) ensures that we can easily extract an invariant on N; (a
property valid for every marking in R(Ny,m;)) from an invariant on N,. This is the
property that ensure the soundness of our model checking technique (see Chapter 5).

Theorem 4.1 (Invariant Conservation). Assume (Ny,m1) >g (Na,ma). If E(py, p2) A
F(p1) is an invariant on N, then F(p1) is an invariant on N.

Proof. Assume property E(p1, p>) AF(p)) is an invariant on N, (where F is a formula
with variables in P;). Take a marking m} in N;. By definition of E-equivalence, we have
at least one marking m/, reachable in N, such that m| Wm), = E. We also have m}, (p>) |=
E(p1,p>2) NF(p1) (from the invariant) and therefore m} Am) AE AF is satisfiable. This
implies that m/ (p) = F(p1), which means that F is an invariant on N; when E A F is
an invariant on N,. [

4.4 Reductions Rules

We introduce different kinds of net reductions in Figures 4.1 to 4.8. For each rule,
we define the matching net (Ny,m;), the corresponding reduced net (N,,m;), and
the resulting equation. In each case, the rule define a triplet (Ny,E,N;) such that
(Ni,m;) >g (N2,mp). We prove the soundness of some of these rules in Appendix
A.l. In each case, we draw the nets with their initial marking, which are expressed
using integer parameters. We also add a condition that should be true initially.

4.5 Composition Laws

Next we prove that polyhedral abstractions are closed by synchronous composition,
relabeling, and chaining. Before defining these operations, we start by describing suf-
ficient conditions in order to safely compose equivalence relations. From theses results
we want to state that the E-equivalence is a congruence (see Th. 4.2).

Theorem 4.2 (E-equivalence is a congruence). Assume we have two compatible equiv-
alence statements (N1,m)) >g (Na,mp) and (No,my) > (N3,m3), and that M is com-
patible with respect to these equivalences, then:

o (Ny,m))||(M,m) >g (Naymy)||(M,m) (see Th. 4.3).
* (N1,my) >g g (N3,m3) (see Th. 4.4).

* (Ni[a/b],m;) >g (Na2[a/b],my) and (Ni|a/t]),m1) >g (N2[a/t],my) (see Th. 4.5).
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Concatenate (CONCAT)

This rule is similar to one of the original reductions proposed in [Berthelot, 1987].

a b
n( Kk
a b
T K X
y2 c
c
N] NZ
Condition: 0 Equation: x =y; +y,

Figure 4.2: Rule Concatenate (CONCAT)
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Concatenate (CONCAT”)

We can define a scheme of rules similar to (CONCAT) by adding or removing labeled transi-
tions with inputs from y; and y, and outputs to y; only. We give an example below. The only
constraints are that place y, should be initially empty and that no extra transition can add a
token to y;.

a

Y1 K

a
T K X
A

2 b c

b c
N, 1 N2
Condition: 0 Equation: x =y, +y,

Figure 4.3: Rule Concatenate (CONCAT’)
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Agglomeration of Places (AGG)

Agglomeration is used to simplify a “cluster of places” between which tokens can move freely.

a b
i K a b
T T x
Y2\ N c d
¢ d
N, N
Condition: 0 Equation: x =y; +y»

Figure 4.4: Rule Agglomeration of Places (AGQG)
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Redundant Places (RED1)

We provide several rules for the elimination of redundant places.

a

b

Ny

10

b
N>

Condition: K > N

Equation: z=y+K—N

Figure 4.5: Rule Redundant Places (RED1)

Redundant Places (RED2)

Y1 Y2

P2
Ny

Vi

N,

Condition: 0

Equation: z=y; +y, + K

Figure 4.6: Rule Redundant Places (RED?2)

24




Redundant Transitions (REDT)

This is the first example of a rule that does not decrease the number of places but that can be
used to simplify transitions. Such rules are interesting because, when applied in collaboration
with others, they can create new opportunities to apply reductions. We give an example of such
mechanism in the example of Sect. 4.7.

c d
\/ ¢

y2

d

Y1
V1
m a b
a b
T

Y2
N1 N2

Condition: 0 Equation: 0

Figure 4.7: Rule Redundant Transitions (REDT)
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Dead Transition Removal (DEADT)

Since place x is initially empty, and no transition can increase its marking, the 7 transition can
never be fired and can therefore be removed.

) . J—(e)

N] N2

Condition: 0 Equation: 0

Figure 4.8: Rule Dead Transition Removal (DEADT)
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Magic Concatenate (MAGIC)

This last rule is an example of reduction that cannot be obtained using the system defined
in [Berthomieu et al., 2019]. This is one of our motivation for developing a “reduction system”
that can be easily extended.

i
T T
a b
X
Y2 T y3
C
T T
C
¥4
N N,
Condition: 0 Equation: x =y; +y, +y3+y4

Figure 4.9: Rule Magic Concatenate (MAGIC)
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These composition laws are useful to build larger equivalences from simpler axioms.
We show two examples of reductions in the next section and how they occur in the
example of Fig. 1.4.

4.5.1 Compatibility of Equations

The goal here is to avoid inconsistencies that could emerge if we inadvertently reuse the
same variable in different reduction equations.

The fresh variables in an equivalence statement EQ : (Ny,m;) g (Na,my) are the vari-
ables occurring in E but not in P; U P». (These variables can be safely “alpha-converted”
in E without changing any of our results.) We say that a net N3 is compatible with re-
spect to EQ when (P; UP;) N Py = 0 and there are no fresh variables of EQ that are also
places in P;. Likewise we say that the equivalence statement EQ' : (N2, my) >/ (N3, m3)
is compatible with EQ when P; NP3 C P, and the fresh variables of EQ and EQ’ are dis-
joint.

4.5.2 Composability (COMP)

In this section we rely on the classical synchronous product operation between labeled
Petri nets. Let N; = (P, T;,pre;,post;) and N, = (P, T, pre,, post,) be two labeled
Petri nets, with labeling functions /; and /; on the respective alphabets ¥; and X,. We
can assume, without loss of generality, that the sets P; and P, are disjoint. We in-
troduce a new symbol, o, used to build (structured) names for transitions that are not
synchronized. The synchronous product between Ny and N, denoted as Ni ||N,, is the
net (P UP,,T,pre,post) where T is the smallest set containing: (1) transition (¢,0) if
I1(t) & Ly; transition (o,t) if [r(t) & Xp; (3) and transition (t,t) if [;(t;) = I>(¢2). The
flow functions of N;||N; are such that pre((¢1,%,),p) = pre,(t1,p) if p € P; and t; # o,
or pre,(t>,p) if p € P, and t; # o (and O in all the other cases). Similarly for post.
Since the places in N and N, are disjoint, we can always see a marking m in Ny ||N;
as the disjoint union of two markings m,my from Ny, N;. In this case we simply write
m = my||my. More generally, we extend this product operation to marked nets and write
(N1,m1)||(N2,my) for the marked net (Ny||Na,my||my).

Lemma 4.3 (Projection and product of sequences). If there is a firing sequence © in
the synchronous product Ni||Na, say (Ny||Na,mi|jm2) = (N |N2,m'y||m}), then its pro-

Jections are also firing sequences: (N;,m;) LAN (N;,m}) forallie 1.2 and l;(c-1) =5
(o -2). Conversely, if (N;,m;) = (N;,m}) for all i € 1.2 and o € (0} ||z 02) then

(N1|[N2,my [|[ma) 2> (Ny || Na, iy || ).

We can now prove that E-abstraction equivalence is stable by synchronous composition.

Theorem 4.3. Assume we have (Ny,m;) >g (Na,my) and that M is compatible with
respect to this equivalence, then (Ny,my)||(M,m) >g (N2,my)||(M,m).
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Proof. 1t is enough to prove the result on E-abstraction, since it will directly entail the
result for equivalence.

By hypothesis system E is solvable for N, N,. Hence, since M is compatible, no place
in Pys can occur in one of the equation of E. Therefore E is also solvable for the pair of
nets (N ||M) and (N, ||M). Likewise, the initial markings (m;||m) and (my||m) are com-
patible together and (m; ||m) W (mz||m) |= E (the constraints in m have no effect on the
equations of E). Therefore condition (A1) is valid for the marked nets (Ny,m,)||(M,m)
and (Nz,mz)H(M,m).

We are left with proving condition (A2). Note that, since N; and N, are equivalent, they
must have the same alphabet: £; = X, and therefore X1 "Xy =X, NYy = L.

Assume we have a firing sequence o in N ||M. By our projection property (Lemma 4.3)
it must be the case that (N} ||M,m||m) = (Ny||M,nt}||m) with (Ny,m;) LA (Ny,m)).

We also have that (M, m) 22, (M,m') with [ (0 - 1) =5 Iy (0 - 2).

By condition (A2) on the abstraction between N; and N;, it must be the case that
(N2, m3) 2, (N2,mb), for some firing sequence o, of N,, for all markings over N,
such that m| Wm), = E. Moreover we have /| (0 - 1) = l(02)(x) and therefore [,(0,) ~x
Im (0o -2). Hence, using the second direction in Lemma 4.3, 0, ||5 (0 -2) is well-defined
and we can choose ¢’ in it such that (Na||N3,my|[ms) == (Na||N3,ndh||m}). Like in

the proof of condition (A1), we obtain that (m ||m}) W (m}||m}) = E from the fact that
m Wm), = E, and E is solvable, and N3 is compatible.

We are left to prove that ¢ and ¢’ have the same observable sequences. This is a
consequence of the fact that /(o - 1) = [(0,) (property x above); and the fact that, by
construction of ¢/, wehave 6'-1 =0, and 6’ -2 =0 -2. O

4.5.3 Transitivity (TRANS)

In this section we prove that we can chain equivalences together in order to derive more
general reduction rules.

Theorem 4.4. Assume we have two compatible equivalence statements (Ny,m;) >
(Nz,mz) and (Nz,mz) > g (N3,m3), then (Nl,ml) >EE (N3,I’I’lg).

Proof. 1t is enough to prove the result on E-abstraction, since it will directly entail the
result for equivalence.

For condition (A1), we use the fact system E,E’ is solvable for Ny,N3;. This is a
consequence of the compatibility assumption, since no fresh variable in E can clash
with a fresh variable in E’. For similar reason, we have that m; W¥my = E and
myWms = E entails m; Wms = E,E’. Indeed we even have the stronger property that
my Amy Am3 NE AE' is satisfiable.
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For condition (A2), we assume that (Ny,m;) = (Ni,n;). Hence, using the fact that

(Ny,my) >g (Np,mp), we have (Np,mp) BN (Np,m,) for every marking m, over N,
such that m| Wm) |= E. Using a similar property from (Na,my) > (N3,m3), we
have (N3,m3) = (N3,m}) for every marking m), over N3 such that m) Wm)y = E. The

result follows from the observation that, since E and E’ are both solvable and the
nets are compatible, for all marking m{ over Nj, if a marking m5 over N3 satisfies
m) Wmj |= E,E’ then there must be a marking m} over N, such that both m{ Wm)) = E
and mj Wmj = E'. O

4.5.4 Relabeling (RENAME)

Another standard operation on labeled Petri net is relabeling, denoted as N[a/b], that
apply a substitution to the labeling function of a net. Assume / is the labeling function
over the alphabet X. We denote /[a/b] the labeling function on (X\ {a})U{b} such that
lla/b](t) = b when [(t) = a and l[a/b](t) = () otherwise. Then N[a/b] is the same
as net N but equipped with labeling function /[a/b]. Relabeling has no effect on the
marking of a net. The relabeling law is true even in the case where b is the silent action
7. In this case we say that we hide action a from the net.

Theorem 4.5. If (Ny,m;) > (Na,my) then (Ni[a/b],m1) >g (N2[a/b],my).

Proof. Assume (Nj,m;) >g (Ny,mp). Condition (A1) does not depend on the labels
and therefore it is also true between Ni[a/b|,E and N»[a/b]. For condition (A2), we
simply use the fact that for any firing sequences o] and 0y, [1(0]) = [(0y) implies
ll[a/b]((71>:lz[a/b](0'2). OJ

The relabeling law is true even in the case where b is the silent action 7. In this case we
say that we have erased action a from the nets.

4.6 Deriving E-Equivalences using Reductions

We can compute net reductions by reusing a tool, called Reduce, developed by the
Vertics team on combining reductions with decision diagrams [Berthomieu et al., 2019].
The tool takes a marked Petri net as input and returns a reduced net and a sequence of
linear equations. For example, given the net M| of Fig. 4.1, Reduce returns net M, and
equations py = p1 + pa,a; = po+ p1,a2 = a, + p3,a3z = ap + p4, whose conjunctions
are equivalent to formula Ey; from Fig. 4.1.

The tool works by applying successive reduction laws, in a compositional way, and it is
possible to prove that each reduction step, from a net (M;, m;) to (M1, m; ) with equa-
tions E;, is such that (M;,m;) >, (Mi1+1,mi+1). Therefore, by Th. 4.2, the reductions
computed by Reduce always translate into valid polyhedral abstractions.
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We can look at our running example to explain the inner working of Reduce. It is al-
ways safe to remove a redundant transition, e.g. a transition with the same pre and post
than another one. Indeed, this preserves the reachable markings. This is the case with
the pair #1,#4. After removing #4, for instance, it is apparent that place p; is redundant
(see the first equivalence in Fig. 4.10). Our tool can find such occurrences by solving
an integer linear programming problem [Silva et al., 1998]. After the removal of p;, we
are left with a residual net similar to the one in the second equivalence of Fig. 4.10.
In this case, we can simplify places pg and pi, since the tokens in these places can
only “move to” p3 and p4 in a deterministic way. This is one of the original net re-
duction rules found in [Berthelot, 1987]. Similar situations, where we can aggregate
several places, can be found by searching patterns in the net. Our tool can also iden-
tify other opportunities for reductions, like specific structural or behavioural restrictions
such that the set of reachable markings is exactly defined by the solutions of the state
equation [Hujsa et al., 2020].

a/ P1 b/ a/ P1 b/

t1o 11 Pa t13 t14 P

> (pa=p1+pa)

3%

D2 c
12
D3 b a2 b
: t ’ t
T P T ’ a !
a P h 2 P4 c > g s as c
to K t[, tg

Figure 4.10: An example of removal of redundant place (above), and of agglomeration
rule (below), with E/ £ (a; = po+ p1) A (a2 = a1 + p3) A (a3 = a; + ps).

In conclusion, we can use Reduce to compute polyhedral abstractions automatically. In
the other direction, we can use our notion of equivalence to prove the correctness of
new reduction patterns that could be added in the tool. While it is not always possible
to reduce the complexity of a net using this approach, we observed in our experiments
(Chapter 7) that, on a benchmark suite that includes almost 1 000 instances of nets, about
half of them can be reduced by a factor of more than 30%.

4.7 An Example of Totally Reducible Nets

We show how we could apply our different rules on the Petri net given in Fig. 1.4, that
was taken from [Stahl, 2011]. This net can be fully reduced, meaning that we can apply
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reductions until we reached the “singleton net” (a Petri net with only one place and no
transitions). This net has only one marking (its initial one).

When we have (Ny,m) >g (Np,my) and the initial markings are obvious from the con-
text we simply write N; >g N,.

When looking at the initial net, Fig. 4.11, we can see several occurrences of the “pattern”
in rule (CONCAT) (sub-nets that are isomorphic to N; in Fig. 4.1). We have emphasized
a particular example in blue that involves places p; and p,'.

pP3 P4

Po

Is
To
D7 D3
P9
O-@3-OA-O- OO
Ps

P1 P2 Pe

Figure 4.11: Initial net, S, with a pattern for rule (CONCAT) emphasized in blue

We can always use a default labeling function where each transition names are used
as labels: we have X = T and [(¢) = ¢t. With this default, by successive application of
rule (CONCAT), (RENAME) (to erase the label on transition #1) and (COMP) we can
derive a reduced net S», see Fig. 4.12, such that S| > S where E is the single equation

ay = p1+p2.

pP3 P4

Po

15
Ty
p7 P8
\
Ps

Figure 4.12: Net S, with the result of applying rule (CONCAT) emphasized in blue

ap

A similar process can be applied on the pairs of places ({p3,pa},{2}), ({ps,p6},{ta})
and ({p7,ps},{ts}), which are also a variation of the (CONCAT) rule. Hence, using the
transitivity law, we can derive a sequence of reduced net S3,S54,S5 such that:

St Baj=pi+p2 52 Pay=ps+ps 53 Das=ps+ps S4 Day=ps+pg S5

'In this example, we use a variation of rule (CONCAT) where the transition with label b in Ny and
N> is removed.
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We display net S5 in Fig. 4.13. From law (TRANS), we have that S| >g5 S5, where Es
is the (solvable) system of equations:

ay =pi1+p2,

Es={ 92 =P3 + P4, 4.1
az = ps—+ pe,
as =p7+ps

a

Po

- “ P9
O O

aj as

Figure 4.13: Net S5, with a pattern for rule (RED1) emphasized in blue

After these first steps of reduction, we obtain a net with an opportunity to use rule
(RED1); on the sub-net of S5 with places a3,a4. (Again, we have emphasized this sub-
net in blue in Fig. 4.13.) By the (COMP) and (TRANS) law, we can therefore infer that
S1 >E, S¢, Where Eg is the system Es, a4 = as.

az

pPo

(o)

P9

OO HH0

ai as

Figure 4.14: Net S¢, with a pattern for rule (RED3) emphasized in blue

We now gained the ability to use rule (RED3) on the sub-net with places a;,a»,a3 to
remove ay, resulting in net S7 and the system E7 that is equal to Eg,a; = a; + a3.
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Po

Ol

P9

OO

ai as

Figure 4.15: Net $7

At this stage, we can apply rule (CONCAT) several times to remove places pg,ai,as, py
until we obtain a net, see Sg below, containing only one place and no transitions. Each
application of rule (CONCAT) introduces a fresh variable name, say as,ag,a7>. All in
all, we infer that S| >g, Sg, where Eg is the system E7,a5s = po+ai,a6 = as+az,a; =
ag + po; giving the final system E such that:

/

ay =pi1+p2
ay = Dp3 +p47
as = ps-—+ Pe,
as = p7-+ps,
E=¢ a4 =a3, 4.2)

a, =aj+as,
as = po-+ai,
ag =as+tas,
l a7 =ag+ P9

ar

O

Figure 4.16: Net Sg

Because the resulting net has no transitions left, its only reachable marking is the initial
marking: this is the only marking over {a;} such that a; = 1. As a consequence of
Lemma 4.1, every marking m that is reachable in S| must be such that m = E a7 =
1. Conversely, from Lemma 4.2, every marking that satisfies this set of constraints is
reachable in § — 1. As a consequence, we can represent the set of reachable markings in
S as the set of (positive, integer) solutions to the linear system E, a7 = 1.

2We can apply these rules in a different order. If we always obtain the same result in this example,
our reduction system is not confluent: a different order in the application of rules may not ultimately lead
to the same result.
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5
Implementation

We developed a prototype model-checker, called SMPT (for Satisfiability Modulo
Petri Net) which is based on a SMT approach and that takes advantage of net reduc-
tions. The SMPT tool is open source, under the GPLv3 licence, and is freely available
on GitHub github.com/nicolasAmat/SMPT/ (see the explanations in Chapter 7). The
current tool offers three different analysis methods that have been developed for gener-
alized Petri nets. No optimizations have been implemented, yet, in the case where the
Petri net is safe.

The main components of the tool correspond to the implementation of the BMC and
PDR methods, that we describe in Sect. 5.2 and 5.3. Before detailing these methods, we
give a brief overview of the “enumerative method”, which corresponds to the simplest
possible approach and gives a good opportunity to understand the advantages of using
reductions.

5.1 Enumerative Markings

The simplest method implemented in our model-checker is what we call the enumerative
method. Assume we want to find states reachable in the net (N, my) that satisfies formula
F, that usually models a set of “feared events”. The idea is to build a formula, p, that
represents the reachable states as a union (a disjunction) of all the markings in Ry ()
and test whether F A p is satisfiable. Otherwise, we have proven that —F is an invariant
over the states of N.

Given a marking m over the set {py, ..., p,}, we denote m the formula that is “satisfiable
only for m”. This is a simple, conjunctive formula in Presburger arithmetic.

m= (pr=m(p1)) A+~ A(pn=m(pn)) (5.1)
p(N,mo) = \/{m | m € Ry(mo)} (5.2)
Or(N,mo) = F(B) A p(N,mg) (5.3)


https://github.com/nicolasAmat/SMPT/

Formula ¢ has as many variables that places in N. Moreover, it has a size proportional
to the number of markings in Ry(mg). The formula only uses Boolean operators and
equality between variables and integers (no quantifiers). This category of constraints
can be solved using procedures for satisfiability modulo Quantifier-free Linear Integer
Arithmetic (QF-LIA), which are part of most SMT solvers.

If the SMT solver returns UNSAT on formula @g then property —F is a safety invariant;
otherwise, if the solver returns SAT, we can extract a model corresponding to a counter-
example for property —F.

This method can only be applied on bounded Petri nets and, in practice, only on nets
with a “reasonable” number of reachable markings (less than a few thousands). The
SMPT tool provides an option, -auto-enumerative, that uses the tool TINA to enu-
merate all the reachable markings of a net and to build an equivalent of formula ¢g
above. We can also use option -enumerative PATH_MARKINGS when we have already
computed the state space in .aut format, the description format used for Labeled Tran-
sition Systems in the Aldebaran tool, part of the CADP toolbox.

Enumerative markings with reductions

We can use a more efficient approach when net N has reductions, since we can decrease
both the number of variables and the size of the formula.

We denote E(%;,5;) the formula obtained from E where place names in N; are replaced
with variables in X; and place names in N, are replaced with variables in y;. When we
have the same place in both nets, say x; and y; stand for the same place in P; N P,, this
operation add the constraint (x; = y;) to E.

Assume that the net N; can be reduced to N,, that is (Ny,m;) >g (N,mp). Then
it is enough to check the satisfiability of formula ¢5(Ny,my) = F(p1) AE(py,p2) A
p (N2, m3).

The correctness of this method is a direct corollary of the basic properties of E-
abstraction (Section 4.3). Note that formula ¢z includes both F' and E. Therefore it

may have more variables than @g, since it can also include variables that are in E but
not in Ny or N,. On the other hand, it may be a lot smaller.

Theorem 5.1. Assume we have (N1,my) >g (N2,my). There is a marking m’1 over Nj
such that m |= ¢r(Ny,my) if and only if there is m), over Ny such that nt, = ¢f(Na,my).

Proof. For the first direction of this equivalence, we assume that (Ny,m;) >g (Np,my)
and m| = @r(N1,m;). Hence formula m/(p1) A F(p)) is satisfiable. By Lemma 4.1,

there must be m), reachable in N, such that m/, Wm), = E. Which means that m () A
mb (p2) NE (P, pa) is satisfiable. Therefore m| (51) Amb(p2) AE(py1, pa) AF(p1) is also

satisfiable, which entails 7} = ¢}(Na,m>). The other direction is similar but relies on
Lemma 4.2. O
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Assume we have (Ny,m;) >g (N2,m;). If the SMT solver returns UNSAT on formula
@r(N2,my) then we know that formula ¢g(Ny,m;) is also UNSAT, and therefore that
—F is an invariant over the reachable markings of N;. Same thing if the solver returns
SAT. In this case, we can extract a model m) corresponding to a counter-example for
property E(p1, p2) AF(p1) in N>. By definition of E-abstraction equivalence, we know
that every marking m/ that is a model of m}(p2) A E(p1, p») is reachable in Ny. Every
such solution is a counter-example for FTﬁl) in Ni. This method can be extremely
efficient when the net has a lot of reductions. For instance when the net is fully (or
almost fully) reducible.

5.2 Bounded Model Checking (BMC)

The Bounded Model Checking analysis method, or BMC for short, is an iterative
method exploring the state-space of finite-state systems by unrolling their transitions
[Biere et al., 1999]. The method was originally based on an encoding of transition
systems into (a family of) propositional logic formulas and the use of SAT solvers
to check these formulas for satisfiability [Clarke et al., 2001]. More recently, this
approach was extended to more expressive models, and richer theories, using SMT
solvers [Armando et al., 2006]. We can also find recent works focused on High-Level
Petri Nets [Liu and He, 2015].

In BMC, we try to find a reachable marking m that is a model for a given formula F,
that models a set of “feared events”. The algorithm starts by computing a formula, say
@p, representing the initial marking and checking whether ¢y A F' is satisfiable (meaning
F 1s initially true). If the formula is UNSAT, we compute a formula ¢; representing all
the markings reachable in one step, or less, from the initial marking and check ¢; A F.
This way, we compute a sequence of formulas (¢;);cn until either ¢; A F is SAT (in
which case a counter-example is found) or we have ¢;,; = ¢; (in which case we reach
a fixpoint and no counter-example exists).

Figure 5.1: BMC method representation

The BMC method is not complete since it is not possible, in general, to bound the
number of iterations needed to give an answer. Also, when the net is unbounded, we
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may very well have an infinite sequence of formulas @9 C ¢; C ... However, in practice,
this method can be very efficient to find a counter-example when it exists.

The crux of the method is to compute formulas ¢; that represents the set of markings
reachable using firing sequences of length at most i. We show how we can build such
formulas incrementally. We assume that we have a marked net (N,mg) with places
P ={p1,...,pn} and transitions T = {¢,...,#;}. In the remainder of this section, we
build formulas that express constraints between markings m and m’ such that m — m’
in N. Hence we define formulas with 2n variables. We use the notation y(X,X’) as a

shorthand for y(xy,...,x,,X},...,x},).

Given a transition # in N we define the formula ENBLD;, (X) that is true when ¢ is enabled
at m. We also define formula A, that describes the evolution of a marking after transition
t fires.

ENBLD; (¥) £ A\{(x; > k) | k = pre(t, p;) > 0} (5.4)
A(%,X) /\{ xi=x;+ &) | 6 = post(t, p;) —pre(t,p;),1 <i<n} (5.5)

In a similar way than with the previous method, we use m(X) to denote a formula with
variables in X that is only “satisfiable at marking m”. (With our notations, formula m is
equivalent to m(p).)

m® = N\ (xi=m(p:)) (5.6)

i€l.n

Next, we define the helper formula 7(X,X’) such that (m(X) A7(X,X') Am'(¥')) entails
that m < m’ when ¢ is enabled at m or that m = m’ otherwise. We will use the simpler

- o

notation #(m,m’) as a shorthand for formula m(X) A (X, X') Am’ (X).

@) & N\ xi=x (5.7)

i€l.n

1(¥,%') = (ENBLD;(¥) = A(¥,X')) A (-ENBLD; (¥) = EQ(¥,X'))

Note that formula ¢ can be more clearly defined using an if - then - else operator,
ite, since t(%,¥) £ ite(ENBLD, (%), A, (%, %), EQ(X,¥)).

With all these notations, it is easy to define formula T (¥, X ) as the disjunction of all the
1(X,X') for t a transition in 7. Hence formula m(X) AT (%,X') Am'(X') entails that m’ is at
most “one step of reduction” from m. We should use a simplified version of this formula
where we remove sub-terms of the form (-ENBLD(X) = EQ(¥,x’)) which are entailed
by the top-level term EQ(X,X'), see below.

T(¥,¥) 2 EQ(X,¥)V \/ (ENBLD, (¥) A A(¥,¥)) (5.8)

teT
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Formula ¢; is the result of connecting i successive occurrences of formulas of the form
T (X ,Xj+1). We define the formulas inductively, with a base case (¢p) which states that
only my is reachable initially. To define the ¢;’s, we assume that we have a collection of
(pairwise disjoint) sequences of variables, (¥;);cn.

¢o(N,mg) = mo(Xo)  Gis1(N,mo) = ¢i(N,mo) AT (X, %i11)

We say that marking m is a model of formula ¢;(N,myg), denoted m |= ¢;(N,myg), when
formula m(X;) A ¢;(N,my) is satisfiable. In this case, m is exactly the mapping from P
to N defined by the valuation of variables in X;. We can prove that the BMC formula
provide a way to find counter-examples to F in the reachable markings of (N, my).

We can prove that this family of BMC formulas provide a way to check invariants on
the reachable markings of (N,my).

Theorem 5.2 (BMC reachability). Assume F(p) is a formula with variables in P, the
set of places in N. Formula F (X;) N\ ¢;(N,mg) is satisfiable if and only if there is a firing
sequence & such that my=>m in N and m |= F (P).

Proof (sketch). The proof is by induction on the value of i and use the fact that 7' (m,m’)
entails m =-m’. It is also possible to show that F (¥;) A ¢;(N,my) satisfiable implies that
o is of length at most i. 0

Therefore we can find a counter-example to F' by checking the satisfiability of formulas
of the form ¢;(N,mg) A F(X;), where F(X) is obtained from F by substituting variables
p with X.

We display in Fig. 5.2 the general architecture of the BMC method. This method is
more efficient when combined with an SMT solver supporting push / pop operations
on the assertion stack. Indeed, to check the satisfiability of a formula at a new iteration,
we do not need to reload a new formula entirely.

Petri net SAT CEX

\ o AR !
/'

property UNSAT

A

k:=k +1
Figure 5.2: BMC Algorithm
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Extension to inhibitor arcs

The transition formula (5.8) must be modified in the case of inhibitor arcs. If a place p
is linked to transition ¢ by an inhibitor arc, we should replace the term p; > k with p; < k
in the formula ENBLD,. At the opposite, no modifications are necessary for read arcs,
since they are equivalent to the combination of two regular arcs (one “incoming” and
one “outgoing”).

Extension of BMC with reductions

The approach we describe here is well-known. It is also quite simplified. Actual model-
checkers that rely on BMC apply several optimizations techniques, such as composi-
tional reasoning; acceleration methods; or the use of invariants on the underlying model
to add extra constraints. We do not consider such optimizations here, on purpose, since
our motivation is to study the impact of polyhedral abstractions. We believe that our
use of reductions is orthogonal and do not overlap with many of these optimizations, in
the sense that we do not preclude them, and that the performance gain we observe with
reductions could not be obtained with these optimizations.

Assume we have (Ny,m;) > (Ny,my). We denote Ty, T, the equivalent of formula 7,
above, for the nets Ny, N, respectively. In the following, we use X, y for sequence of
variables ranging over (the places of) N; and N, respectively. We should use ¢ (Ny,m;)
for the family of formulas build using operator 77 and variables Xy, X1, ... and similarly
for ¢ (N2,m;), where we use T» and variables of the form y.

As for the enumerative method, we denote E (¥, ;) the formula obtained from E where
place names in N are replaced with variables in X; and place names in N, are replaced
with variables in ;. When we have the same place in both nets, say x; and y; stand for
the same place in P N Py, this operation add the constraint (x; = y;) to E.

Lemma 5.1. Assume my,my are markings over Ny,N, respectively. With the notations
used in this section, we have my W my |= E if and only if formula mi(p1) Ama(p2) A
E(p', p>) is satisfiable.

The following property states that, to find a model of F(p)) in the reachable markings
of Ny, it is enough to find a model for F(p1) AE(py, p2) in Ny.

Theorem 5.3 (BMC with reductions). Assume we have (Ny,m) >g (Ny,my) and
that F(p\) is a formula with variables in Py, the set of places in Ni. Formula
F (%) ANE(X,5) A ¢i(Na,my) is satisfiable if and only if there is a firing sequence &
such that my = m'y in Ny and m', |= F(p)).

Proof. We can observe that, since ¢;(N2,mz) A E(X;,¥;) Amy'(X;) is of the form

¢;(N2,m) Ay, we have that m) = ¢;(N2,mp) A E(X;,5;) Amy/(%) implies m) |=
¢ (Na,my).
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We prove this property by induction on i. For the base case, we need to compare formu-
las ¢ (Ny,my) and ¢o(N2,my). The result follows from Lemma 5.1 and the fact that, by
definition of E-abstraction, we have m; Wm; = E.

For the induction case, we prove each direction of the equivalence separately. Assume
we have m) |= ¢;(N1,m). By Th. 5.2 it follows that ] is reachable in (N;,m; ) by some
firing sequence of length i, say o7. Hence, by property of E-abstractions, we know that

there is (at least) a firing sequence 0, and a marking m’2 such that (1) my 2, m’2 and

(2) m} Wm), |= E. By property (2) and Lemma 5.1 we have that m}, = E(X,5) Amy’(¥).
By property (2) and Th. 5.2, it must be the case that m} = @;(N2,my), where j is the
length of 6. When we have “real reductions” (meaning we only eliminate places and
transitions, never the opposite), we also know that o, is smaller than o7. Since the
models of ¢; are also models of ¢; when j < i, we finally obtain m}, = ¢;(Nz,my) A
E(X;,¥;) Ami'(%;), as needed. The induction case in the opposite direction is similar. [J

Our proof actually shows that we can find a counter-example of length i in N; by finding
a counter-example of length j <7 in N,. This is because reductions may compact a
sequence of several transitions into a single one. Take the example of rule (CONCAT).
Therefore BMC benefits from reductions in two ways. First because we can reduce the
size of formulas (which are proportional to the size of the net), but also because we can
“accelerate” transitions in the reduced net.

5.3 Property Directed Reachability (PDR)

While BMC is the right choice when we try to find counter-examples, it usually per-
forms poorly when we want to check an invariant property, AG—F. There are tech-
niques that are better suited to prove inductive invariants in a transition system; that is
a property that is true initially and stays true after firing any transition.

In order to check invariants with SMPT, we have implemented a method called
PDR [Bradley, 2011, Bradley, 2012], which incrementally generates clauses that are
inductive “relative to stepwise approximate reachability information”. PDR is a combi-
nation of induction, over-approximation, and SAT solving. For SMPT, we developed a
similar method that uses SMT solving, to deal with markings and transitions, and that
can take advantage of polyhedral abstractions.

Notations

We use the same notations than with BMC. The PDR method requires to define a set of
safe states, described as the models of some property —F. It also requires a set of initial
states, 1. In our case [ £ mg(X). The procedure is complete for finite transition systems,
for instance with bounded Petri nets. We can also prove termination in the general case
when property —F is monotonic, meaning that m = —F implies that m’ = —F for all
markings m’ that covers m (that is when m’ > m, component-wise). An intuition is that
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it is enough, in this case, to check the property on the minimal coverability set of the
net, which is always finite (see e.g. [Finkel, 1991]).

The PDR method computes sets of states I,P,Q,.... We represent these sets using
formulas ranging over the set of places X = {p, g, ...} and we will often use set-theoretic
symbols for formulas, such as P C Q instead of P = Q. By convention, we use primed
variables p’, ¢, ... for marking m’ (reached from m by firing T). and we use I, P, ...
for the formulas 1, P, ... where variables are substituted with their primed counterparts.

Definition 5.1 (Inductive formula). A formula F is said inductive, if both I = F and
F(X) AT (X,X¥) = F(X') hold. A formula F is inductive relative to a formula G if both
I=Fand GX)NF(X) AT (¥,¥) = F(X) hold.

We have adapted the original PDR method so that it can deal with general markings (and
not only markings of safe Petri nets). The original definition of PDR [Bradley, 2011]
relies heavily on a syntactical restriction over states, that must be expressed as cubes.

A witness for a formula ¢ (X) is a marking m such that m(X) A ¢ (X) is satisfiable; also
denoted m |= ¢. Because of our extension to PDR, it could be the case that we have in-
finitely many states in ¢ (X) AT (X,X') A (=F)(X'), especially if we cannot add an explicit
bound on the marking of a place. Nonetheless, we are sure to terminate if the system is
finite. To overcome the problem of a potential infinite number of witnesses, we define
formula 72 that is valid for every state m’ that has more tokens than m on all places:
formula M(X) A/ () is valid when m’ covers m.

A(x) £ N\{xi > m(x) | m(x;) > 0} (5.9)

By virtue of the monotonicity of the flow function of Petri nets, when —F is monotonic
and m is a witness, we know that all models of 7z are also witnesses (if we do not use
inhibitor arcs). Another benefit of this choice is that 77 is a conjunction of inequalities
of the form (x; > k;), which greatly simplifies the computation of the minimal inductive
clause, defined later. When F is anti-monotonic (—F is monotonic), we can prove the
completeness of the procedure using an adaptation of Dickson’s lemma, which states
that we cannot find an infinite decreasing chain of witnesses (but the number of possible
witness may be extremely large).

Over Approximated Reachability Sequence (OARS)

We want to build an Over Approximated Reachability Sequence (OARS), meaning a
monotone sequence of formulas Fy, ..., Fi |, with variables in X, such that:

l. (Fo=1CF C---CFy C—F),
2. foralli€0.k+ 1. F(X) AT (X,X) = F41(X) (consecution).
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The idea is to stop when we find a fixpoint; an index i such that F; = F;1 1. In this case,
we can return SAFE because there can be no sequence of transitions starting from / and
reaching F. We can also stop during the iteration if we find a counter-example.

By construction, each of the F; is a formula in CNF (conjunctive normal form); basically,
it is the conjunction of a set of clauses of the form —. Also, since we usually have that
I is a singleton set, we already have that Fy is in CNF.

We define CL(F;) to be the set of clauses in F;. By design, the PDR algorithm will build
an OARS where CL is always decreasing, meaning that CL(F;y;) C CL(F;). This is
much more restrictive than the condition F; C F;; ;. This constraint has a positive impact
on performances since we can check the equality F; = F;;| by syntactically looking at
the equivalence of the clauses (as set equality) rather than as semantical equality.

With these notations we have that (apart from Fp = I that may be considered as a special
case) F; = (—F) A \CL(F;). The invariant preserved during the computation is that each
F; describes a set of states that:

1. includes the markings m less than i steps from I, {m' | Vm € ING. m Zom =
6| <i} CF,

2. contains only states m which are more than k — i+ 1 steps from F' (which include
states that cannot reach F), meaning F; C {m | Vm' € FNo.s = m' = |o| >

k—i+1}.

Therefore formula F; represents an over-approximation of the states reachable in up to i
steps. A modification we add in our version of PDR is that F; is a union of 7z and not of
m.

Figure 5.3: PDR method representation
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Algorithm

Initialization

1. We check I(X) AF(X). If it is SAT then we have a trivial counter-example; return
CEX.

2. We check I(X) AT (%,X') AF(X'). Likewise, if it is SAT then return CEX; we have
a counter-example that can reach F after only one transition.

3. We check (—=F)(X) AT (X,X') NF(X'). If it is UNSAT then return SAFE; because
then property —F is inductive. Indeed, from step 1 we have that I(X) = (—F)(X)
and from step 3 we have (=F)(X) AT (X,X) = (—=F)(X).

4. At this point, we have that the sequence (Fy =1,F; = P) is an OARS. Indeed, we
have I C —F from step 1 (and therefore Fy C Fy), and we have Fy(X) AT (¥, X') =
F;(¥') from step 2.

5. Since —F is not inductive from step 3, we also have that (—=F)(X) AT (X,X') NF (X')
is SAT. Therefore we can enumerate solutions to (—F)(X) AT (X,X') AF(X'), say
my,my,... Each of these witness corresponds to a dangerous marking, a state
that can reach F by firing 7. We do not need to enumerate all the witnesses
beforehand, but we will need to iterate over them.

6. Iterate through the witnesses and add —; to the set CL(F) until you have F
inductive. If at one point we have I(X) A T (¥,¥') A1i;(¥') SAT then return CEX;
because we can reach F' from I going through ;. We stop as soon as we have
Fi(X) AT (%,X') NF(X') UNSAT, meaning F; AT (X,X') = (—F)(¥'). Actually, we
do not directly add —wii; but we try, instead, to add a minimal inductive cube
¢; € —m;, see procedure GenerateClause in the next section.

7. At this point, we have that the sequence (Fp, F]) is an OARS.

DOWN, UP and MIC

The algorithm relies on cubes of the form —7iz to extend the set of clauses in the OARS.
When we update a formula F; (by adding a new clause), we will also add the same
clause to all the previous (Fj) ;. It is not necessary to update Fy, but it simplifies the
presentation to do so.

From a cube, say cq, we try to find a minimal inductive clause (MIC) for some property
G (usually one of the top-level F;) using the DOWN algorithm of Manna and Bradley
[Bradley and Manna, 2007]: start with G(X) A co(X) /\ T (X,X") A —co(X'); if it is not in-
ductive (UNSAT) take a valuation s and consider ¢; = ¢o A —it; repeat until you find an
inductive clause. This is exactly what is done in step 5 of initialization.

The final clause, c,,, may not be minimal. This is why we may want to take the result
from DOWN and successively remove literals form it while we stay inductive. We just
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need to consider a random literal in c¢,,; remove it, and check if the result is still in-
ductive for G. This optimization is called MIC in [Bradley and Manna, 2007]. Another
possibility is to use the UNSAT core of z3 that permits the extraction of an unsatisfi-
able core, i.e., a subset of clauses that are mutually unsatisfiable. We implemented both
methods.

This leads to a general procedure GenerateClause (i1, i) to be applied to F; whenever we
have a witness.

Algorithm 1: GenerateClause
Input: 7,i

Find a “minimal inductive cube” ¢ = —m that is inductive relative to F;;
(Minimal here means that no strict sub-clause of ¢ is inductive relative to F;.)

for1 <j<ido
| CL(F)) := CL(Fj) U{c};

Iterations

The algorithm alternates between two different kinds of iterations: a main iteration,
where we add a new element in the OARS (we increase k), and a minor iteration, where
we generate new minimal inductive clauses in the F;. At the end of the initialization
phase, we are in a situation where k = 1, and we start a minor iteration.

1. Main iteration

Assume that the sequence (Fy,...,F;) is an OARS such that F,(X) AT (X,¥) AF(X') is
UNSAT. We extend the sequence with a new element F .| = —F. We also assume that
CL(Fk+1> — @

Before continuing with the minor iteration, we check every formula F;, i > 1, and look
for a clause ¢ € CL(F;) such that: (1) ¢ ¢ CL(F;y1) and (2) F;(X) AT (X,X') A —c(X)
is UNSAT. When this is the case, we propagate the clause forward, i.e., we add c to
CL(F;11). This phase is equivalent to function PropagateClauses in [Bradley, 2011].
(In this phase we grow the formulas F; from left to right.)

We continue until no such clause can be propagated. We can stop and return SAFE
during this process if we find an index i such that CL(F;) = CL(F;y).

2. Minor iteration

When we enter the minor iteration, we have an OARS with Fj, | = —F. By construction
we know that Fi(X) AT (X,X') A F(X') is UNSAT (represented in Figure 5.4) and that
Fipn ANT(R,X) ANF(X') is SAT (see step 4 of the initialization phase).

Here we proceed with the Strengthen phase of [Bradley, 2011] where we can add new
clauses to the F; and propagate them from right to left. We look at set of witnesses
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from Fj 1 AT (X,X') N\F(X'), and generalize them inductively with respect to F;_;. This
is done using a helper function, Push, defined below. There are three cases to consider:

1. If F(X) A —m(X) AT (X,X') A(X') is SAT then GenerateClause(ri,k — 1) and
Push({(r,k)},k+ 1); we have a state in Fi N —ri that leads to /i, this could lead
to a CEX at distance k from /.

2. Otherwise, if Fp1(X) A —m(X) A T(X,X) A (X)) is SAT then Generate-
Clause(r, k) and Push({(/m,k+ 1)},k+ 1); we have another state in Fi; that
leads to F, we choose to push 7 instead.

3. Otherwise GenerateClause (i, k + 1); it is not possible to reach 7 from F, but we

have an occasion to strengthen our invariants.

We continue until Fj,1(X) AT (X,X') AF(X') is UNSAT, if we have not found a CEX
before. Then we continue with a main iteration step.

Figure 5.4: F(X) AT (X,X') = (—=F)(¥') equivalent to Fi(X) AT (X,X') NF(X') UNSAT

3. Push and Generalize functions
We define two recursively defined functions Push and Generalize.

The goal of function Push is to apply an inductive generalization of a dangerous set of
states 71 to its F; state predecessors. The goal of Generalize is to strengthen the invariants
in F by adding cubes generated during the Push procedure. Generalize tries to find the
smallest index in 1 ...k that can lead to the dangerous set of states 7. Actually, a step in
the minor iteration is almost like a call to Generalize(i,k —1,k+1).

Remarks: Since we always execute GenerateClause before calling Push, it is always
the case that (a minimal inductive clause for) —s is added to F before pushing it. Also,
function Push works with a set of pairs (¢, j) corresponding to possible paths leading
to F, where ¢ is interpreted as a state in F;. Part of the complexity here is to avoid the
problematic case of loops in the transition system.
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Algorithm 2: Push
Input: set. k
Output: int
(rir,n) := choose from set minimizing n, we skip the pairs were 7 is bigger than
k;
if SAT (F,(X) AT (X,X") Ai(X')) then
f := set of witnesses that is not in the current set;
m = Generalize(f n.X);
set :=set U{(f,m+1)};

else
m := Generalize(r,n, k);
| set :=set \{(ri,n) f U{(A,m+1)};

Algorithm 3: Generalize
Input: m1,i,k

Output: int
if i < 0 and SAT (Fo(X) AT (X,X) A —i(X) Ai(5")) then
L return CEX;

forici+1...kdo
if SAT (F;(X) A —iu(x) AT (X,X') Ai(X')) then
L GenerateClause(i,i — 1);

return i — 1;

GenerateClause (i, k,k);

return k;

Extension of PDR with reductions

As it was the case with the enumerative and the BMC methods, we can check the prop-
erty on the reduced net by adding a conjunction of constraints stating that states are
linked in E and that F should be true. In the case of PDR, we should also add a formula
expressing the constraint on —F.

Assume we have (Ny,m;) >g (N,mp). We denote Ti,7T> the equivalent of formula
T, from equation (5.8), for the nets Ni, N, respectively. In the following, we use X, y
for sequence of variables ranging over (the places of) N1 and N, respectively. We use
the same formula E(¥,y) than the one defined for the BMC method (see for instance
Lemma 5.1).

To check an invariant on Nj, it is enough to check a slightly modified sequence of
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formulas Fy,...,F; on N>, where F/ is obtained from the (OARS) formulas Fy,...,F;
as follows:

FJ(x,%) £ 1(%) A/\CL F)H)A E*(;éy) (5.10)
7 (%,5) £ (-F)(® A \CL(F)(¥) NE(%,¥), forall i > 1 (5.11)

The soundness of this approach can be handled by using Th. 4.1. Assume (Ny,m;) >g
(Np,my), since E(py, pa) A (=F)(p1) is an invariant on N, we have that (—F)(p}) is an
invariant on V.
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6
Concurrent Places Problem

In this chapter, we study a possible application of our approach to a problem recently
proposed by [Garavel, 2019b, Bouvier et al., 2020] and related to the computation of
Nested Units in Petri Nets [Garavel, 2019a]. We show how to use our approach to
compute pairs of concurrent places in a net. This part of my work is still a work in
progress, but it shows a nice application of reductions for the BMC and PDR methods.
This is why we decided to include it in this report.

6.1 Nested-Unit Petri Net (NUPN)

Nested-Unit Petri nets are an extension of Petri nets in which units of independent places
are made explicit. A unit is a group of places that cannot have more that one token in any
reachable marking [Garavel, 2019a]. (We only focus on unit-safe NUPNs.) NUPN are
used during the Model Checking Contest and are used by more than a dozen verification
tools.

In the following, we consider Petri nets that are safe (all place capacities are equal to
one) and ordinary (such that all arc weights are equal to one).

A marked Nested-Unit Petri net is a tuple (N, mg, U, up, =, unit) where:

* (N,my) is a marked net with places and transitions P, T,

U is the set of units (UNT =UNP =0),

uo € U is the root unit,

C is a binary relation over U, for which u is the greatest element of this relation
and u; C uy expresses that unit u; is transitively nested in or equal to unit u,,

unit : P — U is a function s.t. (Vu € U\{up})(3p € P) unit(p) = u, in other
words, unit(p) expresses that unit u directly contains place p.
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NUPNSs provide an interesting set of invariants that can be used for model checking or
for compositional reasoning on the reachable markings of a Petri net. Computing units
in a safe Petri net requires to answer several problems: finding dead places; finding dead
transitions; and finding concurrent places.

My work is focused on solving the Concurrent Places problem.

6.2 Concurrent Places Problem

Given a marked net (N, my) with set of places P, two places p and p’ in P are concurrent
when there exists a reachable marking m such that both p and p’ are marked in m. The
concurrency relation characterizes those net parts that can be simultaneously active. Itis
mentioned in many publications, under various names, such as “concurrency relation”
for instance [Van Glabbeek et al., 2012, Garavel, 2019b].

Definition 6.1 (Concurrent places). Assume (N,mg) is a marked Petri net. We say that
two places p| and py of N are concurrent, denoted as p1||pa, if and only if there exists
a reachable marking m in Ry(mo) such that m(py) > 0 and m(p,) > 0. By extension,
we say that p||p when p is not dead.

Deciding when places are concurrent is useful for the decomposition of safe nets into
NUPN [Bouvier et al., 2020]. The use of net reductions allow us to solve this problem
on some very big nets, that were not feasible before.

To simplify our presentation, we define the dual relation to concurrency, called indepen-
dence.

Definition 6.2 (Independent places). Assume (N,myg) is a marked Petri net. We say that
two places py and p> of N are independent, denoted as pi#pa, if and only if for all
markings m in Ry(mg) it is the case that m(py) = 0 or m(p) = 0.

The Concurrent Places problem consists of enumerating all pairs of places (py,p2) €
P x P such that p||p,. By definition, this relation depends on the choice of the initial
marking of the net.

Given a total order on the set of places, P = {py,...,pn}, the concurrency relation can
be represented using a n x n matrix C where C[i, j] is 1 if p;||p; and O if p;#p;. Since
the concurrency relation is symmetric, we only need a half-matrix, that we call the
concurrency matrix of (N,mgp). To keep up with the notations used in CADP, we can
also use symbol ? when the relation is undecided. We say that the matrix is incomplete.
Due to the large dimension of the matrix, the output will often be displayed compressed
using the RLE method (run-length encoding). We give an example of such matrices in
Annex A.3.

The CADP tool integrates an option (-concurrent-places) to build the concurrency
matrix from a net [INRIA, 2020]. However, with large nets (more than a few hundreds
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places), the tool often cannot compute the full relation. We implemented a similar
option in the SMPT model-checker by taking advantage of nets reductions. The idea is
to compute the concurrency matrix on the reduced net and transpose the matrix to the
initial net. Our approach can be applied to nets that are unsafe.

6.3 Concurrency Matrix Construction

We propose an algorithm to compute the concurrency matrix from a marked net (N, my).
This algorithm relies on two main component: a stepper, that can compute the “succes-
sors” of a marking, and a model-checker, for finding potential pairs of concurrent places,
or the absence thereof. To simplify the presentation, we assume that we have no dead
places. This case can be handled separately or by a slight modification of our algorithm.

To check if two places are concurrent, we need to find a witness: a reachable marking
m where the two places are marked. In the following, we should often refer to the
concurrency relation, ||, as an undirected graph (P,R) where the vertices are places and
there is an edge (p,q) € R when p||g. While the BMC method is well-suited for finding
witnesses, proving that two places are independent corresponds to proving an invariant.
In this case, the PDR method is most suited. Hence BMC is for finding the 1 in the
concurrency matrix and PDR are for the 0.

Definition 6.3 (c-stable). A c-stable set is a clique in the (graph-equivalent of) concur-
rency relation: a subset S of P is c-stable when p||q for all p,q in S.

By definition the empty set, 0, is c-stable. Likewise, the singleton {p} is c-stable when
p is not dead. More generally, any reachable marking m corresponds to a c-stable set,
in the sense that the set {p | m(p) > 0}, of places marked in m is obviously a c-stable.
Of course this is not necessarily a “maximal clique”.

In the following, we use m both for a marking and its corresponding c-stable set of
places. By extension, we should also use symbol m to range over c-stable sets.

Definition 6.4. If S is a collection of c-stable sets, we say that S |= p||q when there is
m in S such that {p,q} C m. We say that a collection of c-stable sets entails another,
denoted S| C S,, when S = p||q implies S; = pl|g.

Our algorithm computes an under-approximation of the concurrency relation as a union
of cliques (c-stable sets), starting with the initial marking. The main procedure, see
Algorithm 4, computes a set of “non-redundant” witnesses S. We say that S is non-
redundant when, for all element m in S, we have {m} Z S\ {m}. In the algorithm, we
keep a stack of “tentative markings”, A/, that we try to add to S. A marking from A
can be added to S if {m} Z S. Conversely, when we add a marking m to S, we make
sure that no c-stable set in S is entailed by m. This is the purpose of function add.

We have two methods for including new markings. First, we can find new candidates
by firing transitions from markings in A. This can be computed, inexpensively, using a
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Algorithm 4: Computing concurrency relation &

Input: Petri net (N,myg)
Output: Concurrency relation S

S« {}h
N «— {mo};
while A # 0 do
choose m in \V;
S +— add(S, m);
foreach {m' | m — m'} do

| N «— add(NV, m);

if A/ = 0 then
L N <— check(S);

L if {m'}  SUN then

return S;

stepper. This corresponds to the foreach clause in the algorithm. If no new candidates
are found this way, we can use SMPT try to find a witness that is not entailed by S (using
the BMC method) or to prove that all the concurrent places are covered by S (using
PDR). Because the BMC may not terminate, we can run these two methods in parallel.
In practice, we may exit from the algorithm at any time, for instance when computation
takes too long. In this case we have an incomplete matrix, where all elements of the
concurrency matrix are uncertain (?) of the independent elements.

Algorithm 5: Function add
Input: a concurrency relation S and a c-stable set m
Output: an updated concurrency relation S’
S +— {m};
foreach m' € S do
if m" Z m then
L | & —Su{m'};

return S’;

Call to Function add(S, m) is a simple “list comprehension”, where we filter out the c-
stable sets in S that are redundant with m. For function check(S), it is enough to define
the property that we want to test over the set of reachable states. This formula is the
conjunction of two constraints. We are looking for a marking m such that: (1) at least
two places are marked; and (2) that is not “covered” by one of the setin S.

For property (1), it is enough to have at least two valid clauses in the sequence
(m(p1) > 0,...,m(p,) > 0). This can be directly expressed in SMT-LIB using oper-
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ator >4 (@1, ...,0,), which implements an “(at-least) k-out-of-n-out” test.

For property (2), we need to check that m & m’ for all m’ in S, where the test m & m’ can
be encoded as the disjunction \/{m(p) > 0 | m/(p) = 0} (at least one place is marked
in m but not in m’). We follow the notations used in Chapter 5 and denote this formula
Qs(X). Hence we have a possible candidate m to be added to NV, in Algorithm 4, if we
find m reachable in (N,myg) such that m(X) A Qg (X) is true.

Qs® = 2 >0,....,>00A N\ (V (xi>0Am' (p)=0))

meS i€l.n

Algorithm 6: Function check
Input: a concurrency relation S
Output: either a non-redundant witness {m}, or 0 if none exist
parallel
begin
if PDR proves —=(m(X) A Qs(X)) is an invariant then
L return 0;

else
| return counter-example {m};

begin
if BMC finds a counter-example m to —(m(X) A Qg (X)) then
| return {m};

A special case of formula  is when S contains only one set of the form {p;, p;}, with
i # j. We simply denote this formula Q; ;. This formula can be used to check if p;, p;
are independent: we have pi#p; in (N, my) if and only if m(X) A —~€; ;(X) is an invariant
over the reachable markings of (N,my). We can use the PDR method defined in Chapter
5 to test whether the invariant holds. At the opposite, we can use BMC to try and find
counter-examples. Each counter-example provides a “certificate” that p;||p;. In this
case, it may be more efficient to start from the markings in & (which are all reachable)
rather than from my.

We can give some remarks about the complexity of our algorithm. The most complex
part in the computation are in the call to function check. This is why we try to limit them
as much as possible. Formula Qs has n variables but its size is proportional to the size of
S, which may be quite big. Indeed we may have up-to @) non-redundant markings,
one for each possible pair of concurrent places. (This is also an upper-bound on the
number of iterations in Algorithm 4). We could optimize our algorithm by limiting
the size of S. One possible solution will be to collect “maximal cliques” and not only
c-stable sets that corresponds to reachable markings. This can easily be implemented.
Apart from the complexity of the calls to functions add and check, the only other non-

trivial computation is in the test {m'} € SUN (in the conditional inside the foreach
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loop). Our current implementation just look at all the concurrent pairs entailed by m and
check whether they are also in §. This test could be optimized with the help of a better
data structure. Another solution would be to implement it using a SAT solver.

6.4 Change of Basis using Reduction Equations

To follow-up with the goal of my work, we consider the possible use of net reductions
for computing concurrent places. We propose a method that can infer the concurrency
matrix of a Petri net from the concurrency relation of a reduced version. We call this
operation a change of basis.

Assume we have (Ny,m;) > (Np,my). (We consider the case where N has less places
than N;.) To simplify our presentation, we assume that places prefixed by p,q,r,s are
from the initial net Ny (with set of places P;), and that variables prefixed by a,b are
additional variables, which are potentially places in N, (with set of places P5).

We can deduce some of the concurrent places in N1 by looking at the equations in E.
For instance, if E entails both a = p+ ¢ and a < 1 then it must be the case that p,q are
independent (otherwise we could reach a marking where p + ¢ > 2, contradicting our
invariant). In the following, we give a sequence of properties that makes this remark
more formal.

In the following, we use the notation E |= F when f,(F) C f,(E) and, for all possible
solutions of system F, system E is satisfiable. We give a name to each of our properties:
(RED) when it corresponds to equations generated by the reduction of redundant places
and (AGG) when it comes from an “agglomeration” or a “concat” rule. We do not
provide the proofs of these rules in this report.

(RED1) If E |= p > k, where k is a constant and k > 1, then we have p||s in (N;,m;) for

all places s € P; that are not dead.

(RED2) If E |= p = g and p||r then g||r in (N1, m;). This is also true when p and r are the

same places (remember that p||p means that p is not dead), meaning that p not
dead implies ¢ not dead..

(RED3) If E = p = g+ r and ¢q||q (place g is not dead) then p||p.

(RED4) If E = p = g+ rand ¢||s then p||s in (Ny,my).

(AGG1) If E Ea=p1+---+ pn and a||q in (N2,my) (with g also a place in N;) then we

have p;||q in (Ny,m;) foralli € 1..n.

(AGG2) fEl=a=pi+---+pu,b=qi+---+qnand a||bin (N,m;) then we have p;||q;

in (Ny,my) for all i, j € 1..n x 1..m. Note that, by definition of the agglomeration
rules used in our reductions, places p; and g; are necessary different from each
others.
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(AGG3) If E =a=k,a= p;+---+ p, with k > 2 then the set {py,...,p,} is a c-stable.

(AGG4) fEEFa=k,a=p;+---+ p, withk > 1 and s is a place in N different from the
pi and s is not dead then we have s||p; for all i € 1..n.

(AGGS5) fEFa=pi+-+py,b=q1+ -+ ¢qm,a=>b and a is not dead in (N2, m;)
then we have p;||q; in (Ny,m;) for all i, j € 1..n x 1..m. We can make the same
remark than for rule (AGG2).

6.4.1 Algorithm

Assume we have the concurrency matrix C of the reduced net N, which can be obtained
by using 6.3. The idea of our method is to iterate over the system of equations to learn
concurrent places, until all concurrent places are found. This change of basis can be
seen as a fixed point on the reduction equations.

A second way is to build the relation between places as a directed acyclic graph (DAG),
and to obtain the whole concurrency relation by exploring recursively this graph. This
algorithm is not in the scope of this report since it is much more complicated than the
first one, and the “spirit” of our change of basis is more understandable using a fixed
point over the reduction equations.

6.4.2 Example

To illustrate our change of basis algorithm, we consider the case of model Kanban. This
is one of the model used in our benchmarks of Chapter 7, which is fully-reducible. We
provide the set of reduction equations obtained by running the Reduce tool in 6.1. By
rewriting the equations we obtain the following system of equations:

(1) s

all = P1 + Pbackl + Poutl + Pml

(2) 5 = al0 = P2 + Pback2 + Pout2 + Pm2
(3) 5= a9 = P4 + Pback4 + Pout4 + Pmé
(4) a6 = a4 = Pback2 + Pout2 + Pm2

(5) 5 = al0 = a4 + P2

To show up our change of basis we proceed to the first iteration of the algorithm, that is
sufficient to obtain the full concurrency relation in that example.

From (1) by using the (AGG3) rule we obtain that {P1, Pbackl, Poutl, Pml}isa
c-stable set. Similarly for (2) and (3), we know that {P2, Pback2, Pout2, Pm2} and
{P4, Pback4, Pout4, Pm4} are also c-stable sets.

From (4) we have a6 = a4, and from (5) we can infer that a4 = 5. Therefore we can
infer the c-stable set {Pback3, Pout3, Pm3} by using again the (AGG3) rule.

During the second iteration over the reduction equations, since all =5 > 1, places in
{P1, Pbackl, Poutl, Pml} are concurrent to all the non dead places in net Kanban.
Similarly with a10, a9 and a6 by using the (AGG#4) rule.
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Figure 6.1: Output of tool Reduce on the Kanban instance for N =5

Since the agglomerations a6, a9, a10 and al1l cover all the places in the initial net, we

have that all places are pairwise concurrent.

In our example, we consider an “instance” of net Kanban where the initial marking of
places P1, P2, P3 and P4 is 5: this is the instance of Kanban for parameter N = 5. All
instances with N > 2 are not safe (our approach is still valid in this case) and, for all

# R |- P3 = P2

# A |- al = Poutl + Pml
# A |- a2 = Pbackl + al
# A |- a3 = Pout2 + Pm2
# A |- a4 = Pback2 + a3
# A |- a5 = Pout3 + Pm3
# A |- a6 = Pback3 + ab
# A |- a7 = Poutd + Pm4d
# A |- a8 = Pback4 + a7
# A |- a9 = a8 + P4
#R |- a9 =5

#R |- a6 = a4

# A |- al0 = a4 + P2
# R |- al0 =5

# A |- all = a2 + P1
#R |- all =5

such instances, the concurrency relation is total.
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7
Experimental Results

In this chapter, we report on some experimental results obtained with SMPT (for Satisfi-
ability Modulo P/T Nets), our prototype implementation of a SMT-based model-checker
with reduction equations, that implements the ideas developed in Chapter 5. The tool
is open source, under the GPLv3 licence, and is freely available on GitHub (https:
//github.com/nicolasAmat/SMPT/). We have used the extensive database of models
and formulas provided by the Model Checking Contest (MCC) [Amparore et al., 2019,
Hillah and Kordon, 2017] to experiment with our approach.

SMPT serves as a front-end to generic SMT solvers, such as
z3 [de Moura and Bjgrner, 2008, Bjgrner, 2020]. The tool can output sets of con-
straints using the SMT-LIB format [Barrett et al., 2017] and pipe them to a z3 process
through the standard input. We have implemented our tool with the goal to be as
interoperable as possible, but we have not conducted experiments with other solvers
yet. SMPT takes as inputs Petri nets defined using the .net format of the TINA
toolbox. For formulas, we accept properties defined with the XML syntax used in the
MCC competition. The tool does not compute net reductions directly but relies on the
tool Reduce, that we described at the end of Chapter 4.

Our benchmark suite is built from a collection of 102 models used in the MCC compe-
tition. Most of the models are parametrized, and therefore there can be several different
instances for the same model. There are about 1000 different instances of Petri nets
whose size vary widely, from 9 to 50000 places, and from 7 to 200000 transitions.
Most nets are ordinary, but a significant number of them use weighted arcs. Overall, the
collection provides a large number of examples with various structural and behavioral
characteristics, covering a large variety of use cases.

Since our approach relies on the use of net reductions, it is natural to wonder if reduc-
tions occur in practice. To answer this question, we computed the reduction ratio (r),
obtained using Reduce, as a quotient between the number of places before (pjyir) and
after (preq) reduction: 7 = (Pinit — Pred)/ Pinit- We display the results for the whole col-
lection of instances in Fig. 7.1, sorted in descending order. A ratio of 100% (r = 1)
means that the net is fully reduced; the resulting net has only one (empty) marking. We
see that there is a surprisingly high number of models that are totally reducible with our
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approach (about 20% of the total number), with approximately half of the instances that
can be reduced by a ratio of 30% or more.

100

]
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Reduction ratio (%)

100 £00 800 1000
Mumber of instances

Figure 7.1: Distribution of reduction ratios over the instances in the MCC

For each edition of the MCC, a collection of about 30 random reachability properties
are generated for each instance. We evaluated the performance of SMPT using the for-
mulas of the MCC2020, on a selection of 234 Petri nets taken from instances with a
reduction ratio greater than 30%. (To avoid any bias introduced by models with a large
number of instances, we selected at most 5 instances from each model.) We ran SMPT
on each of those instances, for all the formulas, using both the BMC and PDR methods
in parallel. In each case, we check the formulas with and without the help of reductions,
using a timeout of 120 seconds for each property. That adds up to a total of 7655 test
cases (and therefore about 15000 queries for the solver) which required the equivalent
of 400 hours of CPU time. We report our results on the table below. Out of the 7655 test
cases, we were able to compute 4933 results using reductions and only 1922 without
reductions. For each formula, we compared our results with the ones provided by an or-
acle [Thierry-Mieg, 2020a], which gives the correct answer (as computed by a majority
of tools, using different techniques, during the MCC competition). Our reliability on
the benchmark is at 100% (all answers are correct).

REDUCTION # TEST REsuLTS (BMC/PDR)
RATIO (r) CASES WITH REDUCTIONS WITHOUT
All re[0.3,1] 7655 4933  (4697/236) 1922 (1761/161)
Good r€[0.3,0.7] 3384 1485  (1392/93) 697 (631/66)
High rel0.6,1] 2143 1092  (956/136) 344 (303/41)
Full r=1 2558 2557 (n.a./n.a.) 990 (n.a./n.a.)

We give the number of computed results for three different categories of test cases: High
contains only the fully reducible instances (the best possible case with our approach);
while Good/High correspond to instances with a moderate/high level of reduction. At-
tention was paid to the fact that these samples are of approximately the same size. We
also have a general category, All, for the complete set of benchmarks. We observe that
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we are able to compute almost 2.6 times more results when we use reductions than with-
out. This gain is greater on the High (3.2) than on the Good (2.2) instances. But the
fact that it is quite high even for Good instances indicates that our approach can benefit
from all the reductions we can find in a model (and that our results are not skewed by
the large number of fully reducible instances).

We also report the number of cases solved using BMC/PDR. This value is not relevant
for fully reducible nets since, in this case, we can check the result directly on the initial
marking of the reduced net (with a single call to the solver). We observe that the con-
tribution of PDR is poor. This can be explained by several factors. Most notably, we
restricted our implementation of PDR to monotonic formulas (which represents 30%
of all properties). Among these, PDR is useful only when we have an invariant that
is true (meaning BMC will certainly not terminate). On the other hand, PDR is able
to give answer on the most complex cases. Indeed, it is much more difficult to prove
an invariant than to find a counter-example (and we have other means to try and find
counter-examples, like simulation for instance). This is why we intend to improve the
performances and the “expressiveness” of our PDR implementation.

We also compare the computation time, with or without reductions, for each test case.
These results do not take into account the time spent for reducing each instance. This
time is negligible when compared to each test, usually in the order of 1s, and we only
reduce the net once before checking the 30 properties. Figure 7.2 gives three visualiza-
tions (Left) for the computation time “with” (y-axis) and “without” reductions (x-axis),
for the Good, High and Full categories of instances. To avoid overplotting, we removed
all the “trivial” properties (570 in total), that can be computed with and without re-
duction in less than 10ms, and we used a logarithmic scale. These “trivial” properties
could be computed really quickly for various reasons: some instances have a very small
sate-space (see ResAllocation-R002C002 instance), some properties have a counter-
example on the initial marking (see Peterson-PT-3-ReachabilityCardinality-02
property), or some models have a reachable state-space by firing small transition se-
quences (see NighborGrid instances). We observe that almost all the data points are
bellow the diagonal (meaning reductions accelerate the computations), while most of
the rest are on the right border (computation without reductions timeout). On the more
than 7000 test cases we have, there are only 11 cases where we timeout with reductions
but compute a result without. These exceptions can be explained by border cases where
the order in which transitions are processed has a sizeable impact.

Another interesting point is the ratio of properties only computed with reduction. Fig-
ure 7.2 provides the number of computed properties “with” and “only with” reduction
over computation time (Center) for the three categories of instances. From this, we can
extract two main information. First, we observe that reductions allow us to compute
twice as many properties using reductions for the three categories, even if the perfor-
mances are quite better for the Good category. Furthermore, genrally properties com-
puted in more than 10ms are properties unsolvable so far without reductions.

On Figure 7.2 (Right) we give the number of computed properties “with” and “without”

59



reductions over the total number of test cases. It provides an overview of the benefits
of using our polyhedral approach. With reductions we are able to compute more than
twice as many properties, on a huge amount of instances, using BMC and PDR methods.
In the special case of full reducible nets, we can perform almost all the properties (only
one cannot be computed in less than 120s).
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Figure 7.2: Left: Comparing computation time, “with” (y-axis) and “without” (y-axis)
reduction; Center: Number of computed properties “with” (dark blue) and “only with”
(clear blue) reduction over computation time; Right: Number of computed properties
“with” (dark blue) and “without” (clear blue) reduction compared to all properties ex-
aminated (orange).
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8
Conclusion and Perspectives

This research project opened up new horizons for symbolic model checking. The
results at the Model Checking Contest of the tedd tool [Amparore et al., 2019],
which combines decision diagrams and reduction equations [Berthomieu et al., 2018,
Berthomieu et al., 2019], were promising for the Vertics team. The SMPT model-
checker [Amat, 2020] that we developed during this project, combining reduction equa-
tions and SMT-based verification methods, shows that such new methods for reachabil-
ity verification are promising too.

The development of our model-checker led us to explore new algorithms. We adapted
the well known BMC and PDR algorithms to handle generalized Petri nets and take
advantage of our reductions. These algorithms are intended to be improved, such as
PDR, for which we want to extend it to non-montonic properties. But we want to go
even further by working on the state equations, adding invariants, or developing new
methods combining SMT-based methods and Binary Decision Diagrams. A perfect
testing place for this work would be the Reachability category of the Model Checking
Contest.

The key element of this study is reductions. We explore some theoretical aspects to
prove the correctness of these reduction rules. We formalized a new equivalence re-
lation, called E-abstraction equivalence, which introduce a new notion of equivalence
between Petri nets modulo a set of reduction equations. This work could lead to the def-
inition of more “aggressive” reduction rules, preserving only some specific properties
(such as deadlock). We are also interested in implementing a “reduction rule” prover,
with the aim of proving automatically new reduction rules.

Another contribution of this project was to apply my tool on the Concurrent Places
Problem, which is useful for the decomposition into sub-nets, called NUPNs, introduced
by the Convecs team at INRIA [Garavel, 2019a]. We proposed a new approach, which
reconstructs the set of concurrent places of the initial net from the ones in the reduced
net.

To conclude, I believe that this new “polyhedral model checking” approach, that mixes
symbolic model checking and convex analysis, could lead to some very interesting new
developments. For instance, this approach seems to be interesting for model counting
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[Berthomieu et al., 2019]. This is one problem, among others, that I want to explore in
the future.
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A
Appendix

A.1 Proof of Correctness for a Reduction rule

We give an example of correctness proof for rule (CONCAT), below, meaning that we
prove that (Nj,m;) g (N2,my) for the nets defined in the rule below, with E a sys-
tem containing the single equation x = y; 4+ y», and with the constraints on the initial
marking displayed in the nets. Namely, we assume that m;(y;) = my(x) = K > 0 and
that m;(y,) = 0. To ease the presentation, we should use 7,a,b,c as the name of the
transitions, and not only as labels.

Note that, in this rule, nets N; and N, are not bounded, since transition a can always be
fired to increase the marking of places y; and x.

a b
i Kk
a b
T K X
y2 c
c
N] N2
Condition: 0 Equation: x =y; +y,
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We start by proving condition (Al). By construction, we have m; Wm; = E and E is
solvable for N1, N;. Indeed, equation x = y| + y» is always satisfiable when we fix either
the values of variables y;,y,, or the value of x.

We now prove condition (A2) for the relation (Ny,m;) Jg (N2,my). Assume that
(Ni,my) = (N1, m) and that m} Wm), = E. By definition of E, when m is fixed, there
is a unique solution for m} such that m| Wm) |= E; which is m (x) = m (y1) +m| (y2).
We prove that there is a firing sequence o, such that (N, m;) 2, (Np,m,) and [;(07) =
l,(02). We proceed by induction on the length of ;.

(Base Case): if o1 = € then we can choose 6, = € and m’2 =my.

(Induction Case): We have 6] = ¢t where t is one of the transition 7,a,b or c. There-
fore there is a marking m} over N; such that (Ny,m;) =N (Ny,mY) L (Ny,m}). By
induction hypothesis, there is a firing sequence ¢, and a marking m} over N, such that
m)) (x) = mf (y1) +mf(y2) and (N2, m7) 2, (N2,m%). The property follows by a case

analysis on the possible choice of 7.

case t = T: in this case the overall number of token is left unchanged and we can simply
choose 6, = ¢, and m) = m)).

case t = a: transition a can always be fired, we can choose 6, = g a and m, the unique
marking such that my < .

case t = b: since b can be fired from m/ it must be the case that m//(y;) > 1. Hence m5 (x) > 1
and b can also fire from m’z’ in N,. We can choose 0> = ¢ b and m’2 the unique

: b o
marking such that m5 — m). The proof is similar in the case where t = c.

We are left to prove condition (A2) for the relation (Np,m;) Jg (Nj,m;). Assume
we have (N, my) = (N2,m’,). We prove that there is a firing sequence o7 such that
(N1, my) 2 (N1,m}) and [;(01) = [ (02), where m is the marking defined by m/ (y) =

m),(x) and m' (y2) = O (all the tokens are in y;). Like in the previous case, we proceed by
induction on the length of the firing sequence and by a case analysis on the last transition
fired in NV,.

(Base Case): if 0, = € then we can choose 67 = € and m’2 =my.

(Induction Case): We have 6, = ¢t where ¢ is one of the transition a, b or c. Therefore
there is a marking m) over N, such that (N, my) =2, (N2, mf) LN (N2,m5). By induction
hypothesis, there is a firing sequence ¢; and a marking m/ such that m//(y;) = m} (x)
and (Nl,ml) % (Nl,mlll).

case r = a: transition a can always be fired, we can choose 6 = ¢ja and m) the unique
marking such that m < m .
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case t = b: since b can be fired from m7)) it must be the case that m/) (x) > 1. Hence m//(y;) > 1
and b can also fire from m/ in N,. We can choose 67 = 61 b and m) the unique

. b
marking such that m} — m.

case t = ¢: since ¢ can be fired from m’ it must be the case that m5 (x) > 1. Hence m} (y;) > 1
and it is possible to fire the sequence 7c¢ from m]. Hence we have 01 = ¢ Tc.

Condition (A2) follows from the fact that, when marking m’2 1s fixed, then all solutions
m to the constraint m} Wm) = E can be reached by firing a sequence of 7 transitions
from mY such that m (y;) = m (x) and m? (y2) = 0.
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A.2 SMPT Usage

usage: smpt [-h] [--version] [-v] [--debug]

[--xml PATH_PROPERTIES | --deadlock | --quasi-liveness QUASI_LIVE_TRANSITIONS
| --reachability REACHABLE_PLACES]

[--auto-reduce | --reduced PATH_PTNET_REDUCED]

[--save-reduced-net]

[--no-bmc | --no-ic3 | --auto-enumerative | --enumerative PATH_MARKINGS]

[--timeout TIMEOUT] [--skip-non-monotonic] [--display-method]
[--display-model] [--display-time] [--display-reduction-ratio]
ptnet

SMPT: Satisfiability Modulo Petri Net

positional arguments:

ptnet path to Petri Net (.net format)

optional arguments:

-h, --help show this help message and exit

--version show the version number and exit

-v, --verbose increase output verbosity

--debug print the SMT-LIB input/ouput

--xml PATH_PROPERTIES use XML format for properties

--deadlock deadlock analysis

--quasi-liveness QUASI_LIVE_TRANSITIONS liveness analysis (comma separated list of transition names)
--reachability REACHABLE_PLACES reachibility analysis (comma separated list of place names)
--auto-reduce reduce automatically the Petri Net (using ‘reduce‘)
--reduced PATH_PTNET_REDUCED path to reduced Petri Net (.net format)
--save-reduced-net save the reduced net

--no-bmc disable BMC method

--no-ic3 disable IC3 method

--auto-enumerative enumerate automatically the states (using ‘tina‘)
--enumerative PATH_MARKINGS path to the state-space (.aut format)

--timeout TIMEOUT a limit on execution time

--skip-non-monotonic skip non-monotonic properties

--display-method display the method returning the result
--display-model display a counterexample if there is one
--display-time display execution times

--display-reduction-ratio display the reduction ratio
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A.3 AirplaneLD Concurrency Matrix
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