Property Directed Reachability for Generalized Petri Nets

Nicolas Amat, Silvano Dal Zilio, Thomas Hujsa

LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France
TACAS, April 62022

Generalized Petri Nets

Introduction

Generalized Petri Nets

Introduction

- Example: $(2,0,0)$

Generalized Petri Nets

Introduction

- Example: $(2,0,0) \stackrel{t_{1}}{\Rightarrow}(3,0,1)$

Generalized Petri Nets

Introduction

- Example: $(2,0,0) \stackrel{t_{1}}{\Rightarrow}(3,0,1) \stackrel{t_{0}}{\Longrightarrow}(2,1,1)$

Generalized Petri Nets

Introduction

- Example: $(2,0,0) \xrightarrow{t_{1} \cdot t_{0}}(2,1,1)$

Generalized Petri Nets

Introduction

- Example: $(2,0,0) \xrightarrow{t_{1} \cdot t_{0}}(2,1,1) \ldots$

Generalized Petri Nets

Introduction

- Example: $(2,0,0) \xrightarrow{t_{1} \cdot t_{0}}(2,1,1) \ldots$
- No constraints on weights of the arcs
- Possibly unbounded

Generalized Petri Nets

Introduction

- Example: $(2,0,0) \xrightarrow{t_{1} \cdot t_{0}}(2,1,1) \ldots$
- No constraints on weights of the arcs
- Possibly unbounded
- Is $F \triangleq\left(p_{1} \leqslant p_{2} \wedge p_{0} \geqslant 2\right)$ an invariant?

Generalized Petri Nets: QF-LIA Encoding

 Introduction
$\operatorname{ENBL}_{t_{0}}(\boldsymbol{p}) \triangleq\left(p_{0} \geqslant 3\right)$
$\operatorname{ENBL}_{t_{1}}(\boldsymbol{p}) \triangleq\left(p_{0} \geqslant 1\right)$

$$
\begin{aligned}
& \Delta_{t_{0}}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right) \triangleq\left(p_{0}^{\prime}=p_{0}-1\right) \wedge\left(p_{1}^{\prime}=p_{1}+1\right) \wedge\left(p_{2}^{\prime}=p_{2}\right) \\
& \Delta_{t_{1}}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right) \triangleq\left(p_{0}^{\prime}=p_{0}+1\right) \wedge\left(p_{1}^{\prime}=p_{1}\right) \wedge\left(p_{2}^{\prime}=p_{2}+1\right)
\end{aligned}
$$

Generalized Petri Nets: QF-LIA Encoding

Introduction


```
\(\operatorname{ENBL}_{t_{0}}(\boldsymbol{p}) \triangleq\left(p_{0} \geqslant 3\right)\)
\(\operatorname{ENBL}_{t_{1}}(\boldsymbol{p}) \triangleq\left(p_{0} \geqslant 1\right)\)
    \(\Delta_{t_{0}}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right) \triangleq\left(p_{0}^{\prime}=p_{0}-1\right) \wedge\left(p_{1}^{\prime}=p_{1}+1\right) \wedge\left(p_{2}^{\prime}=p_{2}\right)\)
    \(\Delta_{t_{1}}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right) \triangleq\left(p_{0}^{\prime}=p_{0}+1\right) \wedge\left(p_{1}^{\prime}=p_{1}\right) \wedge\left(p_{2}^{\prime}=p_{2}+1\right)\)
```

From this, we can construct the transition relation $T\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right)$

Generalized Reachability Problem

Introduction

Reachable predicate: satisfied by at least one reachable marking

Generalized Reachability Problem

Introduction

Reachable predicate: satisfied by at least one reachable marking

$F \triangleq\left(p_{2} \geqslant 5\right)$

Generalized (Un)Reachability Problem

Introduction

Invariant predicate: satisfied by all the reachable markings (its negation is non-reachable)

Generalized (Un)Reachability Problem

Introduction

Invariant predicate: satisfied by all the reachable markings (its negation is non-reachable)

$$
F \triangleq\left(p_{1} \leqslant p_{2} \wedge p_{0} \geqslant 2\right)
$$

Motivation
 Introduction

- Verification of concurrent systems (biological, business processes, ...)
- Verification of software systems

Motivation Introduction

- Verification of concurrent systems (biological, business processes, ...)
- Verification of software systems
- Analysis of infinite state systems

Motivation Introduction

- Verification of concurrent systems (biological, business processes, ...)
- Verification of software systems
- Analysis of infinite state systems
- Timely subject [Blondin et al. '2021] [Dixon et al. '2020]

Motivation Introduction

- Verification of concurrent systems (biological, business processes, ...)
- Verification of software systems
- Analysis of infinite state systems
- Timely subject [Blondin et al. '2021] [Dixon et al. '2020]
- Category of the Model Checking Contest

Related Work

Introduction

- Theoretical interest:
- Equivalent to Vector Addition Systems with States (VASS)
- Difficult (Ackermann-complete) [Czerwiński et al. '2020]
- Decidable [Mayr '1981 - Kosaraju '1982], but still no complete and efficient method

Related Work

Introduction

- Theoretical interest:
- Equivalent to Vector Addition Systems with States (VASS)
- Difficult (Ackermann-complete) [Czerwiński et al. '2020]
- Decidable [Mayr '1981 - Kosaraju '1982], but still no complete and efficient method
- Many tools:
- ITS-Tools
- LoLA
- TAPAAL
- KReach
- FastForward
- ...

Related Work

Introduction

- Theoretical interest:
- Equivalent to Vector Addition Systems with States (VASS)
- Difficult (Ackermann-complete) [Czerwiński et al. '2020]
- Decidable [Mayr '1981 - Kosaraju '1982], but still no complete and efficient method
- Many tools:
- ITS-Tools
- LoLA
- Tapaal
- KReach
- FastForward
- ...
- But efficient methods are missing for (non-coverability) invariant properties on unbounded nets

Why Are We Here?

Introduction

- Adaptation of PDR for coverability as a testbed for Polyhedral Reductions [Amat et. al '2021]

Why Are We Here?

Introduction

- Adaptation of PDR for coverability as a testbed for Polyhedral Reductions [Amat et. al '2021]
- Construction of a benchmark composed of some (small) complex nets (out of reach of tools)

Why Are We Here?

Introduction

- Adaptation of PDR for coverability as a testbed for Polyhedral Reductions [Amat et. al '2021]
- Construction of a benchmark composed of some (small) complex nets (out of reach of tools)
- Extension to reachability formulas (MCC-like)

Why Are We Here?

Introduction

- Adaptation of PDR for coverability as a testbed for Polyhedral Reductions [Amat et. al '2021]
- Construction of a benchmark composed of some (small) complex nets (out of reach of tools)
- Extension to reachability formulas (MCC-like)
- Certificate of invariance

Inductive Predicate

Introduction

Definition (Inductive Predicate)

A linear predicate F is inductive if:

- $m_{0} \models F$
- for all m s.t. $m \models F$ we have $m \rightarrow m^{\prime}$ entails $m^{\prime} \models F$

Certificate of Invariance

Introduction

"There exist checkable certificates of non-reachability in the Presburger arithmetic" [Leroux, 2009]

Definition (Certificate of Invariance)

A predicate R is a Certificate of Invariance (CI) for F if:

- R inductive
- R entails $F: R(\boldsymbol{p}) \wedge \neg F(\boldsymbol{p})$ unsatisfiable

PDR Algorithm

Basic Presentation PDR Algorithm

- Also known as IC3: Incremental Construction of Inductive Clauses for Indubitable Correctness [Bradley, 2006]
- Symbolic model checking procedure
- Combination of induction, over-approximation, SMT solving

Basic Presentation PDR Algorithm

- Also known as IC3: Incremental Construction of Inductive Clauses for Indubitable Correctness [Bradley, 2006]
- Symbolic model checking procedure
- Combination of induction, over-approximation, SMT solving

We define:

- \mathbb{P}, the invariant that we want to prove on a net $\left(N, m_{0}\right)$
- $\mathbb{F}=\neg \mathbb{P}$ as the set of feared events (DNF)

Over Approximation Reachability Sequence PDR Algorithm

Definition

A sequence of formula $F_{0}, F_{1}, F_{2}, \ldots$ such that
(1) monotonic: $F_{i} \Rightarrow F_{i+1}$
(2) contains initial state: $F_{0}=m_{0}$
(3) does not contain feared state $F_{i}(\boldsymbol{p}) \wedge \mathbb{F}(\boldsymbol{p})$ unsatisfiable
(9) consecution: $F_{i}(\boldsymbol{p}) \wedge \mathrm{T}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right) \wedge \neg F_{i+1}\left(\boldsymbol{p}^{\prime}\right)$ unsatisfiable

Working
 PDR Algorithm

Stop when:

- $F_{i}=F_{i+1}: F_{i}$ is a certificate of invariance of predicate \mathbb{P}
- or, counterexample

Working
 PDR Algorithm

Stop when:

- $F_{i}=F_{i+1}: F_{i}$ is a certificate of invariance of predicate \mathbb{P}
- or, counterexample

Proof Obligation
 PDR Algorithm

We want to generalize scenario such that $m \stackrel{\sigma}{\Rightarrow} m_{f}$ and $m_{f} \models \mathbb{F}$.

- must be a cube (conjunction),

Proof Obligation
 PDR Algorithm

We want to generalize scenario such that $m \stackrel{\sigma}{\Rightarrow} m_{f}$ and $m_{f} \models \mathbb{F}$.

- must be a cube (conjunction),
- assert its negation to block states
- in practice, block the Minimal Inductive Clause

Witnesses Generalization

Generalization of a Witness Scenario

Witness Generalization

Assume we have a witness scenario $\left(m_{1}, \sigma, F\right)$, i.e., there exists m_{1}^{\prime} such that $m_{1} \stackrel{\sigma}{\Rightarrow} m_{1}^{\prime}$ and $m_{1}^{\prime} \models F$ (with F a cube of \mathbb{F})

We have three possible generalizations of the trio $\left(m_{1}, \sigma, F\right)$

(G1) State-based

Witness Generalization

- Monotonicity of Petri nets:
if $m_{1} \stackrel{\sigma}{\Rightarrow} m_{1}^{\prime}$ then for all $m_{2} \geqslant m_{1}$ we have $m_{2} \stackrel{\sigma}{\Rightarrow} m_{1}^{\prime}+\left(m_{2}-m_{1}\right)$

(G1) State-based

Witness Generalization

- Monotonicity of Petri nets:
if $m_{1} \stackrel{\sigma}{\Rightarrow} m_{1}^{\prime}$ then for all $m_{2} \geqslant m_{1}$ we have $m_{2} \stackrel{\sigma}{\Rightarrow} m_{1}^{\prime}+\left(m_{2}-m_{1}\right)$
- Monotonic feared states predicate:
if $m_{1}^{\prime} \models F$ then for all $m_{2}^{\prime} \geqslant m_{1}^{\prime}$ we have $m_{2}^{\prime} \models F$

(G1) State-based

Witness Generalization

- Monotonicity of Petri nets:
if $m_{1} \stackrel{\sigma}{\Rightarrow} m_{1}^{\prime}$ then for all $m_{2} \geqslant m_{1}$ we have $m_{2} \stackrel{\sigma}{\Rightarrow} m_{1}^{\prime}+\left(m_{2}-m_{1}\right)$
- Monotonic feared states predicate:
if $m_{1}^{\prime} \models F$ then for all $m_{2}^{\prime} \geqslant m_{1}^{\prime}$ we have $m_{2}^{\prime} \models F$
- Generalization of $\left(m_{1}, \sigma, F\right):(\boldsymbol{p} \geqslant m)$

(G1) State-based

Witness Generalization

- Monotonicity of Petri nets:
if $m_{1} \stackrel{\sigma}{\Rightarrow} m_{1}^{\prime}$ then for all $m_{2} \geqslant m_{1}$ we have $m_{2} \stackrel{\sigma}{\Rightarrow} m_{1}^{\prime}+\left(m_{2}-m_{1}\right)$
- Monotonic feared states predicate:
if $m_{1}^{\prime} \models F$ then for all $m_{2}^{\prime} \geqslant m_{1}^{\prime}$ we have $m_{2}^{\prime} \models F$
- Generalization of $\left(m_{1}, \sigma, F\right):(\boldsymbol{p} \geqslant m)$

Lemma (G1)

If property F is monotonic and $m_{2} \models(\boldsymbol{p} \geqslant m)$ then $\left(m_{2}, \sigma, F\right)$ is a witness scenario.

(G1) State-based: Concrete Example

Witness Generalization

$$
\text { PGCD net, with } \mathbb{F} \triangleq p_{1} \geqslant 2
$$

Scenario: $(3,1,0) \xrightarrow{t_{0}}(2,2,0)$ where $(2,2,0) \models \mathbb{F}$

(G1) State-based: Concrete Example

Witness Generalization

$$
\text { PGCD net, with } \mathbb{F} \triangleq p_{1} \geqslant 2
$$

Scenario: $(3,1,0) \xrightarrow{t_{0}}(2,2,0)$ where $(2,2,0) \models \mathbb{F}$

- Generalization: $p_{0} \geqslant 3 \wedge p_{1} \geqslant 1$

(G1) State-based: Concrete Example

Witness Generalization

$$
\text { PGCD net, with } \mathbb{F} \triangleq p_{1} \geqslant 2
$$

Scenario: $(3,1,0) \xrightarrow{t_{0}}(2,2,0)$ where $(2,2,0) \models \mathbb{F}$

- Generalization: $p_{0} \geqslant 3 \wedge p_{1} \geqslant 1$
- Learn clause: $p_{0}<3 \vee p_{1}<1$

(G1) State-based: Limitation

Witness Generalization

But: Only suitable for monotonic predicates!
This known as the coverability problem

(G2) Transition-based

Witness Generalization

Given a sequence of transitions σ we define:

(G2) Transition-based

Witness Generalization

Given a sequence of transitions σ we define:

- Displacement $\Delta(\sigma)$
- $\Delta(t)=\boldsymbol{\operatorname { p o s t }}(t)-\boldsymbol{\operatorname { p r e }}(t)$
- $\Delta\left(t \cdot \sigma^{\prime}\right)=\Delta(t)+\Delta\left(\sigma^{\prime}\right)$
- Hurdle $H(\sigma)$ [Hack, 1976]
- $H(t)=\operatorname{pre}(t)$
- $H\left(\sigma_{1} \cdot \sigma_{2}\right)=\max \left(H\left(\sigma_{1}\right), H\left(\sigma_{2}\right)-\Delta\left(\sigma_{1}\right)\right)$

(G2) Transition-based

Witness Generalization

Given a sequence of transitions σ we define:

- Displacement $\Delta(\sigma)$
- $\Delta(t)=\boldsymbol{p o s t}(t)-\boldsymbol{p r e}(t)$
- $\Delta\left(t . \sigma^{\prime}\right)=\Delta(t)+\Delta\left(\sigma^{\prime}\right)$
- Hurdle $H(\sigma)$ [Hack, 1976]
- $H(t)=\operatorname{pre}(t)$
- $H\left(\sigma_{1} \cdot \sigma_{2}\right)=\max \left(H\left(\sigma_{1}\right), H\left(\sigma_{2}\right)-\Delta\left(\sigma_{1}\right)\right)$

Hence, $m \stackrel{\sigma}{\Rightarrow} m^{\prime}$ if and only if:
(1) the sequence σ is enabled at $m: m \geqslant H(\sigma)$
(2) and $m^{\prime}=m+\Delta(\sigma)$

(G2) Transition-based

Witness Generalization

- Generalize sequences instead of states

(G2) Transition-based

Witness Generalization

- Generalize sequences instead of states
- Generalization of $\left(m_{1}, \sigma, F\right):(\boldsymbol{p} \geqslant H(\sigma) \wedge F(\boldsymbol{p}+\Delta(\sigma)))$

(G2) Transition-based

Witness Generalization

- Generalize sequences instead of states
- Generalization of $\left(m_{1}, \sigma, F\right):(\boldsymbol{p} \geqslant H(\sigma) \wedge F(\boldsymbol{p}+\Delta(\sigma)))$

Lemma (G2)

If $m_{2} \models \boldsymbol{p} \geqslant H(\sigma) \wedge F(\boldsymbol{p}+\Delta(\sigma))$ then $\left(m_{2}, \sigma, F\right)$ is a witness scenario.

(G3) Saturated Transition-based

Witness Generalization

We define the Hurdle of a saturated sequence of transitions σ^{k+1} :

$$
H\left(\sigma^{k+1}\right)=\max (H(\sigma), H(\sigma)-k \cdot \Delta(\sigma))=H(\sigma)+k \cdot(-\Delta(\sigma))^{+}
$$

(G3) Saturated Transition-based

Witness Generalization

We define the Hurdle of a saturated sequence of transitions σ^{k+1} :

$$
H\left(\sigma^{k+1}\right)=\max (H(\sigma), H(\sigma)-k \cdot \Delta(\sigma))=H(\sigma)+k \cdot(-\Delta(\sigma))^{+}
$$

And so, $m \stackrel{\sigma}{\Rightarrow} \xlongequal{\sigma^{k}} m^{\prime}$ if and only if
(1) $m \geqslant H(\sigma)+k \cdot \max (\mathbf{0},-\Delta(\sigma))$
(2) $m^{\prime}=m+(k+1) \cdot \Delta(\sigma)$

(G3) Saturated Transition-based

Witness Generalization

Lemma (G3)

Assume a, b are mappings of \mathbb{N}^{P} s.t. $a=H(\sigma)$ and $b=(-\Delta(\sigma))^{+}$

$$
m_{2} \models \exists k \cdot\binom{[\boldsymbol{p} \geqslant a+k \cdot b)]}{\wedge F(\boldsymbol{p}+(k+1) \cdot \Delta(\sigma))}
$$

implies $\exists k$ such that $\left(m_{2}, \sigma^{k+1}, F\right)$ is a witness scenario.

(G3) Saturated Transition-based: Concrete Example

Witness Generalization

$$
\text { Parity, with invariant } \mathbb{P}=\left(p_{0} \geqslant 1\right)
$$

Scenario: $(2) \xrightarrow{t_{2}}(0)$

(G3) Saturated Transition-based: Concrete Example

Witness Generalization

$$
\text { Parity, with invariant } \mathbb{P}=\left(p_{0} \geqslant 1\right)
$$

Scenario: $(2) \xrightarrow{t_{2}}(0)$

$$
\text { - } H\left(t_{2}^{k+1}\right)=(2 \cdot(k+1)) \text { and } \Delta\left(t_{2}^{k+1}\right)=(-2 \cdot(k+1))
$$

(G3) Saturated Transition-based: Concrete Example

Witness Generalization

$$
\text { Parity, with invariant } \mathbb{P}=\left(p_{0} \geqslant 1\right)
$$

Scenario: $(2) \xrightarrow{t_{2}}(0)$

$$
\text { - } H\left(t_{2}^{k+1}\right)=(2 .(k+1)) \text { and } \Delta\left(t_{2}^{k+1}\right)=(-2 .(k+1))
$$

- Generalization: $\exists k .\left(\left(p_{0} \geqslant 2 .(k+1)\right) \wedge\left(p_{0}-2 .(k+1) \geqslant 1\right)\right)$ $\equiv \exists k .\left(p_{0}=2 .(k+1)\right)$

(G3) Saturated Transition-based: Concrete Example

Witness Generalization

$$
\text { Parity, with invariant } \mathbb{P}=\left(p_{0} \geqslant 1\right)
$$

Scenario: $(2) \xrightarrow{t_{2}}(0)$

$$
\text { - } H\left(t_{2}^{k+1}\right)=(2 .(k+1)) \text { and } \Delta\left(t_{2}^{k+1}\right)=(-2 .(k+1))
$$

- Generalization: $\exists k .\left(\left(p_{0} \geqslant 2 .(k+1)\right) \wedge\left(p_{0}-2 .(k+1) \geqslant 1\right)\right)$ $\equiv \exists k .\left(p_{0}=2 .(k+1)\right)$
- Learn clause: $\forall k .\left(p_{0} \neq 2 .(k+1)\right)$

Experimental Results

https://github.com/nicolasAmat/smpt

SMPT: Prototpype Model Checker

Experimental Results

SM(P/)T - Satisfiability Modulo Petri Net

About

SMPT is an SMT-based model-checker for Petri nets mainly focused on reachability problems that takes advantage of net reductions.
https://github.com/nicolasAmat/smpt

Example of Complex Net

Experimental Results

Murphy net, with $\mathbb{P} \triangleq\left(p_{1} \leqslant 2 \wedge p_{4} \geqslant p_{5}\right)$

Comparison on Expressivness

Experimental Results

ITS-Tools, LoLA, TAPAAL: k-induction, state equation, walker, trace abstract refinement, etc.

Instance	SMPT	ITS-TooLS	LoLA	TAPAAL
Murphy	0.75^{*}	TLE	TLE	TLE
PGCD	0.11^{*}	139.08	TLE	TLE
CryptoMiner	0.19^{*}	5.92	TLE	0.18
Parity	0.40^{*}	3.36	0.01	4.16
Process	83.39	TLE	0.03	0.18

*: use of saturation
TLE: Time Limit Exceeded (1 h)

Comparison on Performance

Experimental Results

Tool Certification

Certificate of Invariance

Tool Certification

Parity, with invariant $\mathbb{P}=\left(p_{0} \geqslant 1\right)$

Certificate of Invariance

Tool Certification

Parity, with invariant $\mathbb{P}=\left(p_{0} \geqslant 1\right)$

```
################################
[PDR] Certificate of invariance
# (not (p0 < 1))
# (forall (k1) ((p0 < (2 + (k1 * 2))) or ((p0 + (-2 * (k1 + 1))) >= 1)
################################
[PDR] Certificate checking
# UNSAT(I /\ -Proof): True
# UNSAT(R /\ Proof): True
# UNSAT(Proof /\ T /\ -Proof'): True
################################
FORMULA Parity-Inv TRUE TIME
```


Certificate of Invariance

Tool Certification

Parity, with invariant $\mathbb{P}=\left(p_{0} \geqslant 1\right)$

```
[PDR] Certificate of invariance
\# (not (po < 1))
\# (forall (k1) \(((\mathrm{p} 0<(2+(\mathrm{k} 1 * 2)))\) or \(((\mathrm{p} 0+(-2 *(k 1+1)))>=1)\)
```

$\mathbb{C} \equiv\left(p_{0} \geqslant 1\right) \wedge \forall k .\left(\left(p_{0}<2 k+2\right) \vee\left(p_{0} \geqslant 2 k+3\right)\right)$

- equivalent to $\left(p_{0} \geqslant 1\right) \wedge \forall k .\left(p_{0} \neq 2 .(k+1)\right.$
- meaning the marking of p_{0} is odd

Certificate of Invariance

Tool Certification

Parity, with invariant $\mathbb{P}=\left(p_{0} \geqslant 1\right)$

```
[PDR] Certificate checking
# UNSAT(I /\ -Proof): True
# UNSAT(R /\ Proof): True
# UNSAT(Proof /\ T /\ -Proof'): True
```

Not need to trust our tool: it provide a checkable proof!

Certificate of Invariance

Tool Certification

$$
\text { PGCD, with invariant } \mathbb{P}=\left(p_{1} \leqslant p_{2}\right)
$$

```
[PDR] Certificate of invariance
# (not (p1 > p2))
# (forall (k1) ((p0 < (3 + (k1 * 1))) or ((p1 + (1 * (k1 + 1))) <= p2))
```


Certificate of Invariance

Tool Certification

$$
\text { PGCD, with invariant } \mathbb{P}=\left(p_{1} \leqslant p_{2}\right)
$$

[PDR] Certificate of invariance

\# (not (p1 > p2))
\# (forall (k1) $((\mathrm{p} 0<(3+(k 1 * 1)))$ or $((\mathrm{p} 1+(1 *(k 1+1)))<=p 2))$
$\mathbb{C} \equiv\left(p_{1} \leqslant p_{2}\right) \wedge \forall k \cdot\left(\left(p_{0}<k+3\right) \vee\left(p_{2}-p_{1} \geqslant k+1\right)\right)$

- saturation "learned" the invariant $p_{0}+p_{1}=p_{2}+2$
- use it to strengthen property \mathbb{P} into an inductive invariant (Property Directed)

Conclusion and Perspectives

Conclusion

- We propose a method that works as well on bounded as on unbounded nets
- Behaves well when the invariant is true
- Works with "genuine" reachability properties
- Provide certificate of invariance

Perspectives

Is our method complete?

Perspectives

Is our method complete?

- Complete for coverability properties

Perspectives

Is our method complete?

- Complete for coverability properties
- Incomplete without the saturation

Perspectives

Is our method complete?

- Complete for coverability properties
- Incomplete without the saturation
- Open problem

Perspectives

Is our method complete?

- Complete for coverability properties
- Incomplete without the saturation
- Open problem
- If a proof exists, it would be complicated (cf. Kosaraju's proof)

Thank you for your attention!
Any questions?

