Property Directed Reachability for Generalized Petri Nets

Nicolas Amat, Silvano Dal Zilio, Thomas Hujsa

LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France

TACAS, April 6 2022

Introduction

• *Example*: (2,0,0)

Introduction

• Example: $(2,0,0) \stackrel{t_1}{\Longrightarrow} (3,0,1)$

Introduction

• Example: $(2,0,0) \stackrel{t_1}{\Longrightarrow} (3,0,1) \stackrel{t_0}{\Longrightarrow} (2,1,1)$

Introduction

• *Example*: $(2, 0, 0) \stackrel{t_1.t_0}{\Longrightarrow} (2, 1, 1)$

Introduction

• Example: $(2,0,0) \xrightarrow{t_1.t_0} (2,1,1) \dots$

• Example:
$$(2,0,0) \xrightarrow{t_1,t_0} (2,1,1) \dots$$

- No constraints on weights of the arcs
- Possibly unbounded

• Example:
$$(2,0,0) \xrightarrow{t_1.t_0} (2,1,1) \dots$$

- No constraints on weights of the arcs
- Possibly unbounded
- Is $F \triangleq (p_1 \leqslant p_2 \land p_0 \geqslant 2)$ an invariant?

Generalized Petri Nets: QF-LIA Encoding

$$\begin{split} \text{ENBL}_{t_0}(\boldsymbol{p}) &\triangleq (p_0 \ge 3) \\ \text{ENBL}_{t_1}(\boldsymbol{p}) &\triangleq (p_0 \ge 1) \\ \Delta_{t_0}(\boldsymbol{p}, \boldsymbol{p'}) &\triangleq (p'_0 = p_0 - 1) \land (p'_1 = p_1 + 1) \land (p'_2 = p_2) \\ \Delta_{t_1}(\boldsymbol{p}, \boldsymbol{p'}) &\triangleq (p'_0 = p_0 + 1) \land (p'_1 = p_1) \land (p'_2 = p_2 + 1) \end{split}$$

Generalized Petri Nets: QF-LIA Encoding

Introduction

$$\begin{split} \text{ENBL}_{t_0}(\boldsymbol{p}) &\triangleq (p_0 \ge 3) \\ \text{ENBL}_{t_1}(\boldsymbol{p}) &\triangleq (p_0 \ge 1) \\ \Delta_{t_0}(\boldsymbol{p}, \boldsymbol{p'}) &\triangleq (p'_0 = p_0 - 1) \land (p'_1 = p_1 + 1) \land (p'_2 = p_2) \\ \Delta_{t_1}(\boldsymbol{p}, \boldsymbol{p'}) &\triangleq (p'_0 = p_0 + 1) \land (p'_1 = p_1) \land (p'_2 = p_2 + 1) \end{split}$$

From this, we can construct the transition relation $T(\mathbf{p}, \mathbf{p'})$

Introduction

Reachable predicate: satisfied by at least one reachable marking

Introduction

Reachable predicate: satisfied by at least one reachable marking

Generalized (Un)Reachability Problem

Introduction

Invariant predicate: satisfied by all the reachable markings (its negation is non-reachable)

Generalized (Un)Reachability Problem

Introduction

Invariant predicate: satisfied by all the reachable markings (its negation is non-reachable)

 $\mathsf{F} \triangleq (p_1 \leqslant p_2 \land p_0 \geqslant 2)$

- Verification of concurrent systems (biological, business processes, ...)
- Verification of software systems

- Verification of concurrent systems (biological, business processes, ...)
- Verification of software systems
- Analysis of infinite state systems

- Verification of concurrent systems (biological, business processes, ...)
- Verification of software systems
- Analysis of infinite state systems
- Timely subject [Blondin et al. '2021] [Dixon et al. '2020]

- Verification of concurrent systems (biological, business processes, ...)
- Verification of software systems
- Analysis of infinite state systems
- Timely subject [Blondin et al. '2021] [Dixon et al. '2020]
- Category of the Model Checking Contest

- Theoretical interest:
 - Equivalent to Vector Addition Systems with States (VASS)
 - Difficult (Ackermann-complete) [Czerwiński et al. '2020]
 - Decidable [Mayr '1981 Kosaraju '1982], but still no complete and efficient method

- Theoretical interest:
 - Equivalent to Vector Addition Systems with States (VASS)
 - Difficult (Ackermann-complete) [Czerwiński et al. '2020]
 - Decidable [Mayr '1981 Kosaraju '1982], but still no complete and efficient method
- Many tools:
 - ITS-TOOLS
 - LoLA
 - TAPAAL
 - KREACH
 - FASTFORWARD
 - . . .

- Theoretical interest:
 - Equivalent to Vector Addition Systems with States (VASS)
 - Difficult (Ackermann-complete) [Czerwiński et al. '2020]
 - Decidable [Mayr '1981 Kosaraju '1982], but still no complete and efficient method
- Many tools:
 - ITS-TOOLS
 - LoLA
 - TAPAAL
 - KREACH
 - FASTFORWARD
 - ...
- But efficient methods are missing for (non-coverability) invariant properties on unbounded nets

• Adaptation of PDR for coverability as a testbed for Polyhedral Reductions [Amat et. al '2021]

- Adaptation of PDR for coverability as a testbed for Polyhedral Reductions [Amat et. al '2021]
- Construction of a benchmark composed of some (small) complex nets (out of reach of tools)

- Adaptation of PDR for coverability as a testbed for Polyhedral Reductions [Amat et. al '2021]
- Construction of a benchmark composed of some (small) complex nets (out of reach of tools)
- Extension to reachability formulas (MCC-like)

- Adaptation of PDR for coverability as a testbed for Polyhedral Reductions [Amat et. al '2021]
- Construction of a benchmark composed of some (small) complex nets (out of reach of tools)
- Extension to reachability formulas (MCC-like)
- Certificate of invariance

Inductive Predicate

Introduction

Definition (Inductive Predicate)

A linear predicate F is inductive if:

- $m_0 \models F$
- for all m s.t. $m \models F$ we have $m \rightarrow m'$ entails $m' \models F$

Introduction

"There exist checkable certificates of non-reachability in the Presburger arithmetic" [Leroux, 2009]

Definition (Certificate of Invariance)

A predicate R is a Certificate of Invariance (CI) for F if:

- R inductive
- R entails F: $R(\mathbf{p}) \land \neg F(\mathbf{p})$ unsatisfiable

PDR Algorithm

- Also known as *IC3: Incremental Construction of Inductive Clauses for Indubitable Correctness* [Bradley, 2006]
- Symbolic model checking procedure
- Combination of induction, over-approximation, SMT solving

- Also known as *IC3: Incremental Construction of Inductive Clauses for Indubitable Correctness* [Bradley, 2006]
- Symbolic model checking procedure
- Combination of induction, over-approximation, SMT solving

We define:

- \mathbb{P} , the invariant that we want to prove on a net (N, m_0)
- $\mathbb{F} = \neg \mathbb{P}$ as the set of feared events (DNF)

Over Approximation Reachability Sequence PDR Algorithm

Definition

A sequence of formula F_0, F_1, F_2, \dots such that

- **1** monotonic: $F_i \Rightarrow F_{i+1}$
- 2 contains initial state: $F_0 = m_0$
- **③** does not contain feared state $F_i(\mathbf{p}) \wedge \mathbb{F}(\mathbf{p})$ unsatisfiable
- consecution: $F_i(\boldsymbol{p}) \wedge T(\boldsymbol{p}, \boldsymbol{p'}) \wedge \neg F_{i+1}(\boldsymbol{p'})$ unsatisfiable

Stop when:

• $F_i = F_{i+1}$: F_i is a certificate of invariance of predicate $\mathbb P$

• or, counterexample

Stop when:

- $F_i = F_{i+1}$: F_i is a certificate of invariance of predicate \mathbb{P}
- or, counterexample

We want to generalize scenario such that $m \stackrel{\sigma}{\Rightarrow} m_f$ and $m_f \models \mathbb{F}$.

• must be a cube (conjunction),

We want to generalize scenario such that $m \stackrel{\sigma}{\Rightarrow} m_f$ and $m_f \models \mathbb{F}$.

- must be a cube (conjunction),
- assert its negation to block states
- in practice, block the Minimal Inductive Clause

Witnesses Generalization

Generalization of a Witness Scenario

Witness Generalization

Assume we have a witness scenario (m_1, σ, F) , i.e., there exists m'_1 such that $m_1 \stackrel{\sigma}{\Longrightarrow} m'_1$ and $m'_1 \models F$ (with F a cube of \mathbb{F})

We have three possible generalizations of the trio (m_1, σ, F)

• Monotonicity of Petri nets:

if $m_1 \stackrel{\sigma}{\Rightarrow} m_1'$ then for all $m_2 \geqslant m_1$ we have $m_2 \stackrel{\sigma}{\Rightarrow} m_1' + (m_2 - m_1)$

- Monotonicity of Petri nets: if $m_1 \stackrel{\sigma}{\Rightarrow} m'_1$ then for all $m_2 \ge m_1$ we have $m_2 \stackrel{\sigma}{\Rightarrow} m'_1 + (m_2 - m_1)$
- Monotonic feared states predicate:
 if m'₁ ⊨ F then for all m'₂ ≥ m'₁ we have m'₂ ⊨ F

- Monotonicity of Petri nets: if $m_1 \stackrel{\sigma}{\Rightarrow} m'_1$ then for all $m_2 \ge m_1$ we have $m_2 \stackrel{\sigma}{\Rightarrow} m'_1 + (m_2 - m_1)$
- Monotonic feared states predicate:
 if m'₁ ⊨ F then for all m'₂ ≥ m'₁ we have m'₂ ⊨ F
- Generalization of (m_1, σ, F) : $(\mathbf{p} \ge m)$

- Monotonicity of Petri nets: if $m_1 \stackrel{\sigma}{\Rightarrow} m'_1$ then for all $m_2 \ge m_1$ we have $m_2 \stackrel{\sigma}{\Rightarrow} m'_1 + (m_2 - m_1)$
- Monotonic feared states predicate:
 if m'₁ ⊨ F then for all m'₂ ≥ m'₁ we have m'₂ ⊨ F
- Generalization of (m_1, σ, F) : $(\mathbf{p} \ge m)$

Lemma (G1)

If property F is monotonic and $m_2 \models (\mathbf{p} \ge m)$ then (m_2, σ, F) is a witness scenario.

(G1) State-based: Concrete Example

Witness Generalization

PGCD net, with $\mathbb{F} \triangleq p_1 \geqslant 2$

Scenario: $(3,1,0) \stackrel{t_0}{\Longrightarrow} (2,2,0)$ where $(2,2,0) \models \mathbb{F}$

(G1) State-based: Concrete Example

Witness Generalization

PGCD net, with $\mathbb{F} \triangleq p_1 \geqslant 2$

Scenario: $(3,1,0) \stackrel{t_0}{\Longrightarrow} (2,2,0)$ where $(2,2,0) \models \mathbb{F}$

• Generalization: $p_0 \ge 3 \land p_1 \ge 1$

(G1) State-based: Concrete Example

Witness Generalization

PGCD net, with $\mathbb{F} \triangleq p_1 \geqslant 2$

Scenario: $(3,1,0) \stackrel{t_0}{\Longrightarrow} (2,2,0)$ where $(2,2,0) \models \mathbb{F}$

- Generalization: $p_0 \ge 3 \land p_1 \ge 1$
- Learn clause: $p_0 < 3 \lor p_1 < 1$

But: Only suitable for monotonic predicates!

This known as the coverability problem

(G2) Transition-based Witness Generalization

Given a sequence of transitions σ we define:

Given a sequence of transitions $\boldsymbol{\sigma}$ we define:

- Displacement $\Delta(\sigma)$
 - $\Delta(t) = \mathbf{post}(t) \mathbf{pre}(t)$
 - $\Delta(t.\sigma') = \Delta(t) + \Delta(\sigma')$
- Hurdle $H(\sigma)$ [Hack, 1976]
 - $H(t) = \mathbf{pre}(t)$
 - $H(\sigma_1.\sigma_2) = \max(H(\sigma_1), H(\sigma_2) \Delta(\sigma_1))$

Given a sequence of transitions σ we define:

- Displacement $\Delta(\sigma)$
 - $\Delta(t) = \mathsf{post}(t) \mathsf{pre}(t)$
 - $\Delta(t.\sigma') = \Delta(t) + \Delta(\sigma')$
- Hurdle $H(\sigma)$ [Hack, 1976]
 - $H(t) = \mathbf{pre}(t)$
 - $H(\sigma_1.\sigma_2) = \max(H(\sigma_1), H(\sigma_2) \Delta(\sigma_1))$

Hence, $m \stackrel{\sigma}{\Rightarrow} m'$ if and only if:

• the sequence σ is enabled at m: $m \ge H(\sigma)$

2) and
$$m'=m+\Delta(\sigma)$$

• Generalize sequences instead of states

- Generalize sequences instead of states
- Generalization of (m_1, σ, F) : $(\boldsymbol{p} \ge H(\sigma) \land F(\boldsymbol{p} + \Delta(\sigma)))$

- Generalize sequences instead of states
- Generalization of (m_1, σ, F) : $(\boldsymbol{p} \ge H(\sigma) \land F(\boldsymbol{p} + \Delta(\sigma)))$

Lemma (G2)

If $m_2 \models \boldsymbol{p} \ge H(\sigma) \land F(\boldsymbol{p} + \Delta(\sigma))$ then (m_2, σ, F) is a witness scenario.

We define the Hurdle of a saturated sequence of transitions σ^{k+1} : $H(\sigma^{k+1}) = \max(H(\sigma), H(\sigma) - k \cdot \Delta(\sigma)) = H(\sigma) + k \cdot (-\Delta(\sigma))^+$ We define the Hurdle of a saturated sequence of transitions σ^{k+1} : $H(\sigma^{k+1}) = \max(H(\sigma), H(\sigma) - k \cdot \Delta(\sigma)) = H(\sigma) + k \cdot (-\Delta(\sigma))^+$ And so, $m \xrightarrow{\sigma} \xrightarrow{\sigma^k} m'$ if and only if $m \ge H(\sigma) + k \cdot \max(\mathbf{0}, -\Delta(\sigma))$ $m' = m + (k+1) \cdot \Delta(\sigma)$

Lemma (G3)

Assume a, b are mappings of \mathbb{N}^{P} s.t. $a = H(\sigma)$ and $b = (-\Delta(\sigma))^{+}$

$$m_2 \models \exists k. \left(\begin{array}{c} [\boldsymbol{p} \ge a + k \cdot b)] \\ \land F(\boldsymbol{p} + (k+1) \cdot \Delta(\sigma)) \end{array} \right)$$

implies $\exists k \text{ such that } (m_2, \sigma^{k+1}, F) \text{ is a witness scenario.}$

Scenario: (2) $\stackrel{t_2}{\Longrightarrow}$ (0)

Scenario: (2) $\stackrel{t_2}{\Longrightarrow}$ (0) • $H(t_2^{k+1}) = (2.(k+1))$ and $\Delta(t_2^{k+1}) = (-2.(k+1))$

Scenario: (2) $\stackrel{t_2}{\Longrightarrow}$ (0)

- $H(t_2^{k+1}) = (2.(k+1))$ and $\Delta(t_2^{k+1}) = (-2.(k+1))$
- Generalization: $\exists k. ((p_0 \ge 2.(k+1)) \land (p_0 2.(k+1) \ge 1)) \equiv \exists k. (p_0 = 2.(k+1))$

Parity, with invariant $\mathbb{P} = (p_0 \geqslant 1)$

Scenario: (2) $\stackrel{t_2}{\Longrightarrow}$ (0)

- $H(t_2^{k+1}) = (2.(k+1)) \text{ and } \Delta(t_2^{k+1}) = (-2.(k+1))$
- Generalization: $\exists k. ((p_0 \ge 2.(k+1)) \land (p_0 2.(k+1) \ge 1)) \equiv \exists k. (p_0 = 2.(k+1))$
- Learn clause: $\forall k.(p_0 \neq 2.(k+1))$

Experimental Results

https://github.com/nicolasAmat/smpt

SMPT: Prototpype Model Checker

Experimental Results

https://github.com/nicolasAmat/smpt

Example of Complex Net

Experimental Results

Murphy net, with $\mathbb{P} \triangleq (p_1 \leqslant 2 \land p_4 \geqslant p_5)$

ITS-TOOLS, LOLA, TAPAAL: *k*-induction, state equation, walker, trace abstract refinement, etc.

Instance	SMPT	ITS-Tools	LoLA	TAPAAL
Murphy	0.75 *	TLE	TLE	TLE
PGCD	0.11 *	139.08	TLE	TLE
CryptoMiner	0.19 *	5.92	TLE	0.18
Parity	0.40 *	3.36	0.01	4.16
Process	83.39	TLE	0.03	0.18

*: use of saturation TLE: Time Limit Exceeded (1h)

Comparison on Performance

Experimental Results

Tool Certification

Tool Certification

Tool Certification

Parity, with invariant $\mathbb{P} = (p_0 \geqslant 1)$

Tool Certification

$$\begin{array}{c} \begin{array}{c} & 2 \\ \hline t_1 \\ \end{array} \xrightarrow{p_0} \\ \hline \end{array} \xrightarrow{p_0} \\ \hline \end{array} \xrightarrow{p_0} \\ \hline \end{array} \xrightarrow{t_2} \\ \hline \end{array}$$

Parity, with invariant $\mathbb{P}=(p_0 \geqslant 1)$

[PDR] Certificate of invariance
(not (p0 < 1))
(forall (k1) ((p0 < (2 + (k1 * 2))) or ((p0 + (-2 * (k1 + 1))) >= 1)

 $\mathbb{C} \equiv (p_0 \ge 1) \land \forall k. ((p_0 < 2 k + 2) \lor (p_0 \ge 2 k + 3))$

- equivalent to $(p_0 \ge 1) \land \forall k. (p_0 \ne 2.(k+1))$
- meaning the marking of p_0 is odd

Tool Certification

```
[PDR] Certificate checking
# UNSAT(I /\ -Proof): True
# UNSAT(R /\ Proof): True
# UNSAT(Proof /\ T /\ -Proof'): True
```

Not need to trust our tool: it provide a checkable proof!

Tool Certification

PGCD, with invariant $\mathbb{P} = (p_1 \leqslant p_2)$

```
[PDR] Certificate of invariance
# (not (p1 > p2))
# (forall (k1) ((p0 < (3 + (k1 * 1))) or ((p1 + (1 * (k1 + 1))) <= p2))</pre>
```

Tool Certification

PGCD, with invariant $\mathbb{P} = (p_1 \leqslant p_2)$

[PDR] Certificate of invariance
(not (p1 > p2))
(forall (k1) ((p0 < (3 + (k1 * 1))) or ((p1 + (1 * (k1 + 1))) <= p2))</pre>

$$\mathbb{C} \equiv (p_1 \leqslant p_2) \land \forall k. ((p_0 < k+3) \lor (p_2 - p_1 \geqslant k+1))$$

- saturation "learned" the invariant $p_0 + p_1 = p_2 + 2$
- use it to strengthen property ℙ into an inductive invariant (Property Directed)

Conclusion and Perspectives
- We propose a method that works as well on bounded as on unbounded nets
- Behaves well when the invariant is true
- Works with "genuine" reachability properties
- Provide certificate of invariance

• Complete for coverability properties

- Complete for coverability properties
- Incomplete without the saturation

- Complete for coverability properties
- Incomplete without the saturation
- Open problem

- Complete for coverability properties
- Incomplete without the saturation
- Open problem
- If a proof exists, it would be complicated (cf. Kosaraju's proof)

Thank you for your attention!

Any questions?