Accelerating the Computation of Dead and Concurrent Places using Reductions This is a model checking paper where no transitions are fired!

Nicolas Amat, Silvano Dal Zilio, Didier Le Botlan

LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France

SPIN 2021, July 12 2021

비로 《문》 《문》 《집》 《日》

Introduction

A pair of places (p, q) are concurrent, denoted p || q, if there is *m* in $R(N, m_0)$ such that both m(p) > 0 and m(q) > 0.

A safe Petri net

Introduction

A pair of places (p, q) are concurrent, denoted p || q, if there is *m* in $R(N, m_0)$ such that both m(p) > 0 and m(q) > 0.

A safe Petri net

 $p_0 || p_6$

Introduction

A pair of places (p, q) are concurrent, denoted p || q, if there is *m* in $R(N, m_0)$ such that both m(p) > 0 and m(q) > 0.

 $\begin{array}{c}
p_0 \| p_6 \\
p_1 \| p_3 \\
p_1 \| p_6 \\
p_3 \| p_6
\end{array}$

A safe Petri net

Introduction

A pair of places (p, q) are concurrent, denoted p || q, if there is *m* in $R(N, m_0)$ such that both m(p) > 0 and m(q) > 0.

A safe Petri net

 $\begin{array}{c} p_0 \| p_6 \\ p_1 \| p_3 \\ p_1 \| p_6 \\ p_3 \| p_6 \\ p_2 \| p_3 \\ p_2 \| p_6 \end{array}$

Introduction

A pair of places (p, q) are concurrent, denoted p || q, if there is m in $R(N, m_0)$ such that both m(p) > 0 and m(q) > 0.

A safe Petri net

Introduction

A pair of places (p, q) are concurrent, denoted p || q, if there is m in $R(N, m_0)$ such that both m(p) > 0 and m(q) > 0.

A safe Petri net

• Used for the decomposition into networks of automata

N 1 1			•		
1/11	0	26		m	nt
					au

- Many results based on **linear algebra** and linear programming techniques [Murata, 1989] [Silva et al., 1996]
 - Potentially reachable markings
 - Place invariants
 - ...

Image: Image:

▶ < ∃ ▶</p>

- Many results based on **linear algebra** and linear programming techniques [Murata, 1989] [Silva et al., 1996]
 - Potentially reachable markings
 - Place invariants
 - . . .
- Structural reductions [Berthelot, 1987]

▶ < ∃ ▶</p>

- Many results based on **linear algebra** and linear programming techniques [Murata, 1989] [Silva et al., 1996]
 - Potentially reachable markings
 - Place invariants
 - ...
- Structural reductions [Berthelot, 1987]
- And 30 years after... [Berthomieu et al., 2018] Structural reductions with linear equations

- Many results based on **linear algebra** and linear programming techniques [Murata, 1989] [Silva et al., 1996]
 - Potentially reachable markings
 - Place invariants
 - ...
- Structural reductions [Berthelot, 1987]
- And 30 years after... [Berthomieu et al., 2018] Structural reductions with linear equations
- Combination with SMT [Amat et al., 2021]

- Many results based on **linear algebra** and linear programming techniques [Murata, 1989] [Silva et al., 1996]
 - Potentially reachable markings
 - Place invariants
 - ...
- Structural reductions [Berthelot, 1987]
- And 30 years after... [Berthomieu et al., 2018] Structural reductions with linear equations
- Combination with SMT [Amat et al., 2021]
- Concurrent Places: Good testbed for our new approach!

Petri Nets and Polyhedral Abstraction

Net Reduction Example: Step 1

Polyhedral Abstraction

Rule: RED

1

Net Reduction Example: Step 2

Polyhedral Abstraction

Rule: CONCAT

$$E \triangleq \begin{cases} p_5 = p_4 \\ a_1 = p_1 + p_2 \\ a_2 = p_3 + p_4 \end{cases}$$

-

Net Reduction Example: Step 3

Polyhedral Abstraction

Rule: RED

E-Abstraction Equivalence

Polyhedral Abstraction

-

On the Combination of Polyhedral Abstraction and SMT-based Model Checking for Petri Nets, N. Amat et al., Petri Nets 2021

Definition (*E*-abstraction)

 $(N_1, m_1) \sqsupseteq_E (N_2, m_2)$ iff

(A1) initial markings are compatible with *E*, meaning $m_1 \uplus m_2 \models E$

(A2) for all observation sequences $\sigma \in \Sigma^*$ such that $(N_1, m_1) \stackrel{\sigma}{\to} (N_1, m_1')$ • there is at least one marking $m_2' \in R(N_2, m_2)$ such that $m_1' \uplus m_2' \models E$ • for all markings m_2' we have that $m_1' \uplus m_2' \models E$ implies $(N_2, m_2) \stackrel{\sigma}{\to} (N_2, m_2')$ On the Combination of Polyhedral Abstraction and SMT-based Model Checking for Petri Nets, N. Amat et al., Petri Nets 2021

Definition (*E*-abstraction)

 $(N_1, m_1) \sqsupseteq_E (N_2, m_2)$ iff

(A1) initial markings are compatible with *E*, meaning $m_1 \uplus m_2 \models E$

(A2) for all observation sequences $\sigma \in \Sigma^*$ such that $(N_1, m_1) \stackrel{\sigma}{\to} (N_1, m_1')$ • there is at least one marking $m_2' \in R(N_2, m_2)$ such that $m_1' \uplus m_2' \models E$ • for all markings m_2' we have that $m_1' \uplus m_2' \models E$ implies $(N_2, m_2) \stackrel{\sigma}{\to} (N_2, m_2')$

E-abstraction equivalence

 $(N_1, m_1) \triangleright_E (N_2, m_2)$ iff $(N_1, m_1) \sqsupseteq_E (N_2, m_2)$ and $(N_2, m_2) \sqsupseteq_E (N_1, m_1)$

Token Flow Graphs

三日 のへの

3

- 一司

Construction Token Flow Graphs

 (N_2, m_2)

伺 ト イヨト イヨト

Construction Token Flow Graphs

• *Remark*: Roots are places of the reduced net (N_2, m_2)

.

Token Flow Graphs

• Configuration c: partial function from V to $\mathbb N$

Token Flow Graphs

- Configuration c: partial function from V to $\mathbb N$
 - $c(v) = \bot$ when c not defined on v
 - Total if for all v in V we have $c(v) \neq \bot$

-

- Configuration c: partial function from V to $\mathbb N$
 - $c(v) = \bot$ when c not defined on v
 - Total if for all v in V we have $c(v) \neq \bot$
- Well-defined configuration

- Configuration c: partial function from V to $\mathbb N$
 - $c(v) = \bot$ when c not defined on v
 - Total if for all v in V we have $c(v) \neq \bot$
- Well-defined configuration
 - Agglomeration: if $c(v) \neq \bot$ then $c(v) = \sum_{w \mid v \circ \to w} c(w)$

- Configuration c: partial function from V to $\mathbb N$
 - $c(v) = \bot$ when c not defined on v
 - Total if for all v in V we have $c(v) \neq \bot$
- Well-defined configuration
 - Agglomeration: if $c(v) \neq \bot$ then $c(v) = \sum_{w \mid v \to w} c(w)$
 - Redundancy: if $c(w) \neq \bot$ then $c(w) = \sum_{v \mid v \to w} c(v)$

• Configuration c: partial function from V to $\mathbb N$

- $c(v) = \bot$ when c not defined on v
- Total if for all v in V we have $c(v) \neq \bot$
- Well-defined configuration
 - Agglomeration: if $c(v) \neq \bot$ then $c(v) = \sum_{w \mid v \circ \to w} c(w)$
 - Redundancy: if $c(w) \neq \bot$ then $c(w) = \sum_{v \mid v \to \bullet w} c(v)$
 - Bottom: if $v \to v'$ then $c(v) = \bot$ if and only if $c(v') = \bot$

• Configuration c: partial function from V to $\mathbb N$

- $c(v) = \bot$ when c not defined on v
- Total if for all v in V we have $c(v) \neq \bot$
- Well-defined configuration
 - Agglomeration: if $c(v) \neq \bot$ then $c(v) = \sum_{w \mid v \to w} c(w)$
 - Redundancy: if $c(w) \neq \bot$ then $c(w) = \sum_{v \mid v \to \bullet w} c(v)$
 - Bottom: if $v \to v'$ then $c(v) = \bot$ if and only if $c(v') = \bot$
- If c total then $c_{|N_1}$ (resp. $c_{|N_2}$) is marking of N_1 (resp. N_2)

 $\llbracket E \rrbracket$ is a well-formed TFG for the equivalence $(N_1, m_1) \triangleright_E (N_2, m_2)$

Theorem (Reachable marking extension)

If m is a marking in $R(N_1, m_1)$ (resp. $R(N_2, m_2)$) then there exists a total, well-defined configuration c of $\llbracket E \rrbracket$ such that $c_{|N_1} = m$ (resp. $c_{|N_2} = m$).

Theorem (Reachability equivalence)

Given a total, well-defined configuration c of $[\![E]\!]$, if marking $c_{|N_1}$ is reachable in (N_1, m_1) then $c_{|N_2}$ is reachable in (N_2, m_2) .

Token Flow Graphs

- 4 ∃ ▶

Token Flow Graphs

- 4 ∃ ▶

Token Flow Graphs

• Total and well-defined configuration c such that $c_{|N_2} = m_2'$

Token Flow Graphs

• Total and well-defined configuration c such that $c_{|N_2} = m_2'$

- Total and well-defined configuration c such that $c_{|N_2} = m'_2$
- $c_{|N_2}$ reachable in (N_2, m_2) implies $c_{|N_1}$ reachable in (N_1, m_1)

Kong: Koncurrent Places Grinder

Kong

🛛 nicolasA	mat / Kong				
<> Code					
	1 master - 1 branch 🗞 0 tags		Go to file Add file - 💆 Code -	About ®	
	nicolasAmat Delete useless script		377aec2 on May 6 🕥 113 commits	grach inear-slorbra model-checking	
	README.md				
				Releases	
				No releases published Create a new release	
	🗅 setup.py			Packages	
	token_flow_graph.py				
	:= README.md				
	Kona: Koncurrent	places Grinder		Languages	
				Python 61.4% Jupyter Notebook 32.3% Shell 6.3%	

Kong

Kong

$$C_{(N_2,m_2)} = \begin{array}{c} a_2 & p_0 & p_6 \\ a_2 & p_0 & p_6 \\ p_0 & 1 & 1 \\ p_6 & 1 & 1 \end{array} \right) \begin{array}{|c|c|} p_0 & a_2 & p_6 \\ a_1 & a_2 & p_4 & p_4 \\ p_1 & p_2 & p_5 & p_6 \end{array}$$

- ∢ ∃ ▶

 $C_{(N_2,m_2)} = \begin{array}{c} a_2 & p_0 & p_6 \\ a_2 & p_0 & p_6 \\ p_0 & \begin{pmatrix} 1 & & \\ 0 & 1 & \\ 1 & 1 & 1 \end{pmatrix} \\ p_1 & p_2 & p_5 \end{array}$

Kong

-

 $C_{(N_2,m_2)} = \begin{array}{c} a_2 & p_0 & p_6 \\ p_0 & 1 & 0 \\ p_6 & 1 & 1 \end{array} \right) \left| \begin{array}{c} p_0 & p_6 \\ p_1 & p_2 \\ p_1 & p_2 \end{array} \right|$

Lemma (Propagation of Live Nodes)

If $v \| v$ and $v \rightarrow^* w$ then $w \| w$

Kong

Kong

$$C_{(N_2,m_2)} = \begin{array}{c} a_2 & p_0 & p_6 \\ a_2 & p_0 & p_6 \\ p_0 & 1 & 1 \\ p_6 & 1 & 1 \end{array} \right) \begin{array}{|c|c|} p_0 & a_2 & p_6 \\ a_1 & a_2 & p_4 \\ p_1 & p_2 & p_5 \end{array}$$

$$C_{(N_1,m_1)} = \begin{pmatrix} p_0 & p_1 & p_2 & p_3 & p_4 & p_5 & p_6 \\ p_1 & & & & \\ p_2 & & & & \\ p_4 & & & \\ p_5 & & & & & \\ p_6 & & & & & & \\ p_7 & & & & & & & \\ p_7 & & & & & & & \\ p_7 & & & & & & & \\ p_7 & & & & & & & & \\ p_7 & & & & & & & & \\ p_7 & & & & & & & & \\ p_7 & & & & & & & & \\ p_7 & & & & & & & & \\ p_7 & & & & & & & & \\ p_7 & & & & & & & & \\ p_7 & & & & & & & & \\ p_7 & & & & & & & & \\ p_7 & & & & & & & & \\ p_7 & & & & & \\ p_7 & & & &$$

伺 ト イヨト イヨト

Kong

$$C_{(N_2,m_2)} = \begin{array}{c} a_2 & p_0 & p_6 \\ a_2 & \begin{pmatrix} 1 & & \\ 0 & 1 & \\ p_6 & 1 & 1 & 1 \end{array} \right) \begin{array}{|c|c|} & p_0 & p_6 & & \\ p_0 & & p_1 & & \\ p_1 & & p_2 & & \\ p_2 & & p_5 & & \\ p_1 & & p_1 & & \\ p_2 & & p_2 & & \\ p_1 & & p_2 & & \\ p_2 & & p_1 & & \\ p_2 & & p_2 & & \\ p_1 & & p_2 & & \\ p_2 & & p_1 & & \\ p_2 & & p_2 & & \\ p_2 & & p_2 & & \\ p_1 & & p_2 & & \\ p_2 & & p_2 & & \\ p_2 & & p_2 & & \\ p_2 & & p_2 & & \\ p_1 & & p_2 & & \\ p_2 & & p_2 & & \\ p_2 & & p_2 & & \\ p_1 & & p_2 & & \\ p_2 & & p_2 & & \\ p_2 & & p_2 & & \\ p_1 & & p_2 & & \\ p_2 & & p_2 & & \\ p_1 & & p_2 & & \\ p_2 & & p_2 & & \\ p_1 & & p_2 & & \\ p_2 & & p_2 & & \\ p_1 & & p_2 & & \\ p_2 & & p_2 & & \\ p_1 & & p_2 & & \\ p_2 & & p_2 & & \\ p_1 & & p_2 & & \\ p_2 & & p_2 & & \\ p_1 & & p_2 & & \\ p_2 & & p_2 & & \\ p_1 & & p_2 & & \\ p_2 & & p_2 & & \\ p_1 & & p_2 & & \\ p_2 & & p_2 & & \\ p_1 & & p_2 & & \\ p_2 & & p_2 & & \\ p_1 & & p_2 & & \\ p_2 & & p_2 & & \\ p_2 & & p_2 & & \\ p_2 & & p_2 & & \\ p_1 & & p_2 & & \\ p_2 & & p_2 & & \\ p_1 & & p_2 & & \\ p_2 & & p_2 & & \\ p_1 & & p_2 & & \\ p_2 & & p_2 & & \\ p_1 & & p_2 & & \\ p_2 & & p_2 & & \\ p_1 & & p_2 & & \\ p_2 & & p_2 & & \\ p_1 & & p_2 & & \\ p_2 & & p_2 & & \\ p_1 & & p_2 & & \\ p_2 & & p_2 & & \\ p_2 & & p_2 & & \\ p_1 & & p_2 & & \\ p_2 & & p_2 & & \\ p_1 &$$

1

< /□ > < 三

▶ ∢ ∃ ▶

 $C_{(N_2,m_2)} = \begin{array}{c} a_2 & p_0 & p_6 \\ a_2 & p_0 & p_6 \\ p_0 & 1 & p_1 \\ p_6 & 1 & 1 & 1 \end{array} \right) \begin{array}{c} p_0 & p_0 & p_1 \\ p_1 & p_2 & p_5 \end{array}$

Lemma

Kong

If v || v and $v \rightarrow w$ then v' || w' for every pair of nodes (v', w') such that $v' \in (\downarrow(v) \setminus \downarrow w)$ and $w' \in \downarrow w$.

Kong

$$C_{(N_2,m_2)} = \begin{array}{c} a_2 & p_0 & p_6 \\ a_2 & p_0 & p_6 \\ p_0 & 1 & 1 \\ p_6 & 1 & 1 & 1 \end{array} \right) \begin{array}{|c|c|} p_0 & p_0 & p_0 & p_0 \\ p_1 & p_2 & p_2 & p_5 & p_6 & p_6 \\ p_1 & p_2 & p_5 & p_6 & p_6 & p_6 & p_6 & p_6 & p_6 \\ p_1 & p_2 & p_5 & p_6 &$$

$$C_{(N_1,m_1)} = \begin{pmatrix} p_0 & p_1 & p_2 & p_3 & p_4 & p_5 & p_6 \\ p_1 & & & & \\ p_2 & & & & \\ p_2 & & & & \\ p_4 & & & & \\ p_5 & & & & & \\ p_6 & & & & & & \\ p_6 & & & & & & \\ p_7 & 1 & 1 & 2 & 1 & \\ p_7 & 1 & 1 & 2 & 1 & \\ p_7 & 1 & 1 & 2 & 2 & 1 & \\ p_7 & 2 & 2 & 2 & 2 & 1 & \\ p_7 & 2 & 2 & 2 & 2 & 1 & \\ p_8 & p_8$$

- ∢ ∃ ▶

Kong

$$C_{(N_2,m_2)} = \begin{array}{c} a_2 & p_0 & p_6 \\ a_2 & p_0 & p_6 \\ p_0 & 1 & 1 \\ p_6 & 1 & 1 \end{array} \right) \begin{array}{|c|c|} p_0 & p_0 & p_0 & p_0 \\ p_1 & p_2 & p_1 & p_2 \\ p_2 & p_5 & p_5 & p_5 & p_5 \\ p_1 & p_2 & p_5 & p_5 & p_5 & p_5 \\ p_1 & p_2 & p_5 \\ p_1 & p_2 & p_2 & p_5 & p_5$$

$$C_{(N_1,m_1)} = \begin{pmatrix} p_0 & p_1 & p_2 & p_3 & p_4 & p_5 & p_6 \\ p_1 & & & & \\ p_2 & & & \\ p_4 & & & \\ p_5 & & & \\ p_6 & & & & \\ p_7 & 1 & 1 & 1 & \\ p_7 & 1 & 1 & 1 & \\ p_7 & 1 & 1 & 2 & 1 & \\ p_7 & 1 & 1 & 2 & 1 & \\ p_7 & 1 & 1 & 2 & 1 & \\ p_7 & 2 & 2 & 2 & 2 & 1 \end{pmatrix}$$

- ∢ ∃ ▶

Kong

$$C_{(N_2,m_2)} = \begin{array}{c} a_2 & p_0 & p_6 \\ a_2 & p_0 & p_6 \\ p_0 & 1 & 1 \\ p_6 & 1 & 1 \end{array} \right) \begin{array}{|c|c|} p_0 & a_2 & p_6 \\ a_1 & a_2 & p_4 \\ p_1 & p_2 & p_5 \end{array}$$

$$C_{(N_1,m_1)} = \begin{pmatrix} p_0 & p_1 & p_2 & p_3 & p_4 & p_5 & p_6 \\ p_1 & & & & \\ p_2 & & & \\ p_4 & & & \\ p_5 & & & & \\ p_6 & & & & & \\ p_6 & & & & & & \\ p_1 & &$$

伺 ト イヨト イヨト

 $C_{(N_2,m_2)} = \begin{array}{c} a_2 & p_0 & p_6 \\ a_2 & \begin{pmatrix} 1 & & \\ 0 & 1 & \\ p_6 & \begin{pmatrix} 1 & & \\ 0 & 1 & \\ 1 & 1 & 1 \end{pmatrix} \\ \end{array} \right) \begin{array}{c} p_0 \\ p_1 \\ p_1 \\ p_2 \\ p_2 \\ p_5 \end{array}$

Kong

-

 $C_{(N_2,m_2)} = \begin{array}{c} a_2 & p_0 & p_6 \\ a_2 & \begin{pmatrix} 1 & & \\ 0 & 1 & \\ p_6 & \begin{pmatrix} 1 & & \\ 0 & 1 & \\ 1 & 1 & 1 \end{pmatrix} \end{array} \right| \begin{array}{c} p_0 & a_2 & p_6 \\ a_1 & p_3 & p_4 & p_6 \\ p_1 & p_2 & p_5 & p_6 & p_6 \\ p_1 & p_2 & p_5 & p_6 & p_6 & p_6 \\ p_1 & p_2 & p_5 & p_6 & p_6 & p_6 \\ p_1 & p_2 & p_5 & p_6 & p_6 & p_6 & p_6 \\ p_2 & p_3 & p_6 & p_6 & p_6 & p_6 & p_6 \\ p_1 & p_2 & p_5 & p_6 & p_6 & p_6 & p_6 & p_6 \\ p_1 & p_2 & p_5 & p_6 &$

Lemma

Kong

Assume v, w are two nodes in $\llbracket E \rrbracket$ such that $v \notin \downarrow w$ and $w \notin \downarrow v$. If $v \parallel w$ then $v' \parallel w'$ for all pairs of nodes $(v', w') \in \downarrow v \times \downarrow w$.

Kong

$$C_{(N_2,m_2)} = \begin{array}{c} a_2 & p_0 & p_6 \\ a_2 & p_0 & p_6 \\ p_0 & 1 & 1 \\ p_6 & 1 & 1 & 1 \end{array} \right) \begin{array}{|c|c|} p_0 & p_0 & p_1 & p_2 \\ p_1 & p_2 & p_5 & p_5 & p_5 \\ p_1 & p_2 & p_5 & p_5 & p_5 & p_5 \\ p_1 & p_2 & p_5 \\ p_1 & p_2 & p_5 &$$

$$C_{(N_1,m_1)} = \begin{pmatrix} p_0 & p_1 & p_2 & p_3 & p_4 & p_5 & p_6 \\ p_1 & & & & \\ p_2 & & & & \\ p_2 & & & & \\ p_2 & & & & & \\ p_3 & & & & \\ p_4 & & & & \\ p_5 & & & & & & \\ p_6 & & & & & & & \\ p_6 & & & & & & & \\ p_1 & & & & & & & \\ ? & 1 & 1 & 1 & 1 & & \\ ? & 1 & 1 & ? & 1 & 1 \\ ? & 1 & 1 & ? & 1 & 1 \\ ? & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

▲ 冊 ▶ ▲ 三 ▶ ▲ 三 ▶

Kong

$$C_{(N_1,m_1)} = \begin{pmatrix} p_0 & p_1 & p_2 & p_3 & p_4 & p_5 & p_6 \\ p_1 & & & & \\ p_2 & & & \\ p_2 & p_3 & & \\ p_4 & & & \\ p_5 & & & \\ p_6 & & & & & \\ 1 & 1 & 1 & 0 & 1 & \\ 0 & 1 & 1 & 0 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

< A > <

-

Experimental Results

Prevalence of Reductions over the MCC Instances

Experimental Results

Computation Time for Complete Matrices (timeout of 1 h) Experimental Results

Reduction ratio: [0.25, 0.5[(orange) and [0.5, 1] (blue)

Nico	26 1	Amat
INICO	1 3 7	¬iiiiai

Filling Ratio for Partial Matrices (timeout of 60 s) Experimental Results

Reduction ratio: [0.25, 0.5[(orange) and [0.5, 1] (blue)

Nic	olas	sА	mat

Conclusion and Perspectives

-

- We propose a new method for accelerating the computation of concurrent places ⇒ by transposing the problem from an initial, high-dimensionality domain, into a smaller one
- Algorithm: complexity is linear in the size of the output (but with a rich formalization and a complex proof)
- Token Flow Graphs: a new data-structure + gives a better insight on the structure of reduction equations

- New applications:
 - Model Counting
 - Max-marking
 - Generalized Mutual Exclusion Constraints
- k-concurrent relation
- Max-concurrent

Thank you for your attention!

Any questions?

< 口 > < 同

∃ ► < ∃ ►</p>

三日 のへの

Results for a Selected Set of Instances

Experimental Results

Model	REDUC.	Size	Computed Values (Kong Improvement)	ONLY OS	Exec Time	
INAME	ItA110 (1)				Kong	CAESAR
BART-030	100%	8 696 535	×300.04	×291.39	8.73 s	87.14 s
SmartHome-19	82%	274 911	×1.06	×1.13	71.17 s	1405.61 s
Peterson-6	67%	885 115	×22.41	×38.22	212.66 s	389.15 s
Database-20	37%	5 315 430	×11.08	×49.27	62.39 s	60.21 s

Image: Image:

▶ ▲ 분 ▶ 분 별 ▲ 의 Q @