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What is Kong?
Introduction

A tool for reachability problems using polyhedral reductions

Concurrent places problem: enumerate all pairs of places
that can be marked together in some reachable marking

Marking reachability: is a given marking reachable?

Freely available under the GPLv3 license
github.com/nicolasAmat/Kong
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Polyhedral reduction
Theoretical background

(N1,m1)︸ ︷︷ ︸
initial net

▷E︸︷︷︸
linear system

(N2,m2)︸ ︷︷ ︸
reduced net

Correspondence between the set of reachable markings
“modulo” the linear equations E
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Polyhedral reduction
Theoretical background

Theorem (Reachability preservation)

Assume m′
1,m

′
2,E is satisfiable then m′

2 is reachable in (N2,m2)
if and only if m′

1 is reachable in (N1,m1).
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Token Flow Graph
Theoretical background

A Token Flow Graph is a DAG that captures the specific
structure of reduction equations

E = (p5 = p4) ∧ (a1 = p2 + p1) ∧ (a2 = p4 + p3) ∧ (a1 = a2)
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Overview
Architecture & Usage

Basically a front-end to accelerate the computation of
reachability problems

Divided into three subcommands: reach, conc and dead

Input formats: .pnml, .net and .nupn
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reach subcommand – Basic usage
Architecture & Usage

$> ./kong.py reach model.pnml -m marking

REACHABLE

Textual description of the marking: “p1 p4 p5”
(assume non-specified places do not contain tokens)
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reach subcommand – Reduction options
Architecture & Usage

--show-equations

# System of equations

# R |- p5 = p4

# A |- a1 = p2 + p1

# A |- a2 = p4 + p3

# R |- a1 = a2

--save-reduced-net
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reach subcommand – Marking projection
Architecture & Usage

--draw-graph

p0 p6a2

a1

p3

p4

p1 p2 p5

--projected-marking:

p0 = 0 ∧ a2 = 1 ∧ p6 = 0
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No projection! And so, the marking is trivially unreachable.
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reach subcommand – Overview
Architecture & Usage
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conc subcommand – Basic usage
Architecture & Usage

$> ./kong.py conc model.pnml --place-names

model.pnml
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Output

p0 1

p1 01

p2 001

p3 0111

p4 01101

p5 011011

p6 1(7)
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conc subcommand – Computation options
Architecture & Usage

--show-reduced-matrix

# Reduced concurrency matrix

# a2 1

# p0 01
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conc subcommand – Overview
Architecture & Usage
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Benchmark suite
Performance

Models from the Model Checking Contest (MCC)

Concurrent places

424 instances with reduction opportunities (out of 562 safe)

Marking reachability

Selected of 426 instances (out of 1 411)

Generated 5 reachable markings as queries using a “random walk”

We compare: Caesar.BDD and Sift alone, on the initial net,
and Kong + Reduce + Caesar.BDD or Sift

All benchmark scripts are available online!
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Concurrent places
Performance

Minimal timeout to compute a given number of concurrency matrices
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Reachability queries
Performance

Minimal timeout to compute a given number of queries

19 / 23



Outline

1 Theoretical background

2 Architecture & Usage

3 Performance

4 Reduction tools

5 Perspectives

20 / 23



Reduce & Shrink – Our reduction tools
Reduction tools

Reduce
https://projects.laas.fr/tina

Available in the Tina Toolbox
Since version 3.7 (January 20, 2022)

Used in Tina and SMPT in the MCC

Shrink
https://github.com/Fomys/pnets

Freely available under MIT license

Based on the pnets library
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Perspectives

Generalized Mutual Exclusion Constraints∑
p∈P wp.m(p) ⩽ k , with w1, . . . ,wn, k constants in Z

Explore new reduction rules

Still a lot of work to be done to compute polyhedral
reductions, and to apply them on useful and complex

problems!
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