
Kong: a Tool to Squash Concurrent Places
(and more...)

Nicolas Amat, Louis Chauvet

LAAS-CNRS

Petri Nets, June 22 2022

What is Kong?
Introduction

A tool for reachability problems using polyhedral reductions

Concurrent places problem: enumerate all pairs of places
that can be marked together in some reachable marking

Marking reachability: is a given marking reachable?

Freely available under the GPLv3 license
github.com/nicolasAmat/Kong

2 / 23

github.com/nicolasAmat/Kong

What is Kong?
Introduction

A tool for reachability problems using polyhedral reductions

Concurrent places problem: enumerate all pairs of places
that can be marked together in some reachable marking

Marking reachability: is a given marking reachable?

Freely available under the GPLv3 license
github.com/nicolasAmat/Kong

2 / 23

github.com/nicolasAmat/Kong

What is Kong?
Introduction

A tool for reachability problems using polyhedral reductions

Concurrent places problem: enumerate all pairs of places
that can be marked together in some reachable marking

Marking reachability: is a given marking reachable?

Freely available under the GPLv3 license
github.com/nicolasAmat/Kong

2 / 23

github.com/nicolasAmat/Kong

Outline

1 Theoretical background

2 Architecture & Usage

3 Performance

4 Reduction tools

5 Perspectives

3 / 23

Polyhedral reduction
Theoretical background

(N1,m1)︸ ︷︷ ︸
initial net

▷E︸︷︷︸
linear system

(N2,m2)︸ ︷︷ ︸
reduced net

Correspondence between the set of reachable markings
“modulo” the linear equations E

4 / 23

Polyhedral reduction
Theoretical background

(N1,m1)︸ ︷︷ ︸
initial net

▷E︸︷︷︸
linear system

(N2,m2)︸ ︷︷ ︸
reduced net

Correspondence between the set of reachable markings
“modulo” the linear equations E

p0

p1 p2

p3

p4

p5

p6

t0

t1

t2

t3

t4

BE

p0

a2

p6

t7

t6t5

1

E = (p5 = p4) ∧ (a1 = p2 + p1) ∧ (a2 = p4 + p3) ∧ (a1 = a2)

4 / 23

Polyhedral reduction
Theoretical background

Theorem (Reachability preservation)

Assume m′
1,m

′
2,E is satisfiable then m′

2 is reachable in (N2,m2)
if and only if m′

1 is reachable in (N1,m1).

p0

p1 p2

p3

p4

p5

p6

t0

t1

t2

t3

t4

BE

p0

a2

p6

t7

t6t5

1

E = (p5 = p4) ∧ (a1 = p2 + p1) ∧ (a2 = p4 + p3) ∧ (a1 = a2)

4 / 23

Token Flow Graph
Theoretical background

A Token Flow Graph is a DAG that captures the specific
structure of reduction equations

E = (p5 = p4) ∧ (a1 = p2 + p1) ∧ (a2 = p4 + p3) ∧ (a1 = a2)

p0 p6a2

a1

p3

p4

p1 p2 p5

5 / 23

Outline

1 Theoretical background

2 Architecture & Usage

3 Performance

4 Reduction tools

5 Perspectives

6 / 23

Overview
Architecture & Usage

Basically a front-end to accelerate the computation of
reachability problems

Divided into three subcommands: reach, conc and dead

Input formats: .pnml, .net and .nupn

7 / 23

reach subcommand – Basic usage
Architecture & Usage

$> ./kong.py reach model.pnml -m marking

REACHABLE

Textual description of the marking: “p1 p4 p5”
(assume non-specified places do not contain tokens)

8 / 23

reach subcommand – Basic usage
Architecture & Usage

$> ./kong.py reach model.pnml -m marking

REACHABLE

Textual description of the marking: “p1 p4 p5”
(assume non-specified places do not contain tokens)

8 / 23

reach subcommand – Reduction options
Architecture & Usage

--show-equations

System of equations

R |- p5 = p4

A |- a1 = p2 + p1

A |- a2 = p4 + p3

R |- a1 = a2

--save-reduced-net

p0

a2

p6

t7

t6t5

1

9 / 23

reach subcommand – Marking projection
Architecture & Usage

--draw-graph

p0 p6a2

a1

p3

p4

p1 p2 p5

--projected-marking:

p0 = 0 ∧ a2 = 1 ∧ p6 = 0

10 / 23

reach subcommand – Marking projection
Architecture & Usage

p0 = 0 ∧ p1 = 1 ∧ p2 = 0 ∧ p3 = 0 ∧ p4 = 1 ∧ p5 = 1 ∧ p6 = 0

p0 p6a2

a1

p3

p4

p1 p2 p5

--projected-marking:

p0 = 0 ∧ a2 = 1 ∧ p6 = 0

10 / 23

reach subcommand – Marking projection
Architecture & Usage

p0 p6a2

a1

p3

p4

p1 p2 p5

--projected-marking:

p0 = 0 ∧ a2 = 1 ∧ p6 = 0

10 / 23

reach subcommand – Marking projection
Architecture & Usage

p0 p6a2

a1

p3

p4

p1 p2 p5

--projected-marking:

p0 = 0 ∧ a2 = 1 ∧ p6 = 0

10 / 23

reach subcommand – Marking projection
Architecture & Usage

p0 = 0 ∧ p1 = 1 ∧ p2 = 0 ∧ p3 = 0 ∧ p4 = 0 ∧ p5 = 1 ∧ p6 = 0

p0 p6a2

a1

p3

p4

p1 p2 p5

No projection! And so, the marking is trivially unreachable.

11 / 23

reach subcommand – Marking projection
Architecture & Usage

p0 = 0 ∧ p1 = 1 ∧ p2 = 0 ∧ p3 = 0 ∧ p4 = 0 ∧ p5 = 1 ∧ p6 = 0

p0 p6a2

a1

p3

p4

p1 p2 p5

No projection! And so, the marking is trivially unreachable.

11 / 23

reach subcommand – Marking projection
Architecture & Usage

p0 = 0 ∧ p1 = 1 ∧ p2 = 0 ∧ p3 = 0 ∧ p4 = 0 ∧ p5 = 1 ∧ p6 = 0

p0 p6a2

a1

p3

p4

p1 p2 p5

No projection! And so, the marking is trivially unreachable.

11 / 23

reach subcommand – Marking projection
Architecture & Usage

p0 = 0 ∧ p1 = 1 ∧ p2 = 0 ∧ p3 = 0 ∧ p4 = 0 ∧ p5 = 1 ∧ p6 = 0

p0 p6a2

a1

p3

p4

p1 p2 p5

No projection! And so, the marking is trivially unreachable.

11 / 23

reach subcommand – Overview
Architecture & Usage

12 / 23

conc subcommand – Basic usage
Architecture & Usage

$> ./kong.py conc model.pnml --place-names

model.pnml

p0

p1 p2

p3

p4

p5

p6

t0

t1

t2

t3

t4

1

Output

p0 1

p1 01

p2 001

p3 0111

p4 01101

p5 011011

p6 1(7)

13 / 23

conc subcommand – Computation options
Architecture & Usage

--show-reduced-matrix

Reduced concurrency matrix

a2 1

p0 01

14 / 23

conc subcommand – Overview
Architecture & Usage

15 / 23

Outline

1 Theoretical background

2 Architecture & Usage

3 Performance

4 Reduction tools

5 Perspectives

16 / 23

Benchmark suite
Performance

Models from the Model Checking Contest (MCC)

Concurrent places

424 instances with reduction opportunities (out of 562 safe)

Marking reachability

Selected of 426 instances (out of 1 411)

Generated 5 reachable markings as queries using a “random walk”

We compare: Caesar.BDD and Sift alone, on the initial net,
and Kong + Reduce + Caesar.BDD or Sift

All benchmark scripts are available online!

17 / 23

Benchmark suite
Performance

Models from the Model Checking Contest (MCC)

Concurrent places

424 instances with reduction opportunities (out of 562 safe)

Marking reachability

Selected of 426 instances (out of 1 411)

Generated 5 reachable markings as queries using a “random walk”

We compare: Caesar.BDD and Sift alone, on the initial net,
and Kong + Reduce + Caesar.BDD or Sift

All benchmark scripts are available online!

17 / 23

Benchmark suite
Performance

Models from the Model Checking Contest (MCC)

Concurrent places

424 instances with reduction opportunities (out of 562 safe)

Marking reachability

Selected of 426 instances (out of 1 411)

Generated 5 reachable markings as queries using a “random walk”

We compare: Caesar.BDD and Sift alone, on the initial net,
and Kong + Reduce + Caesar.BDD or Sift

All benchmark scripts are available online!

17 / 23

Concurrent places
Performance

Minimal timeout to compute a given number of concurrency matrices

18 / 23

Reachability queries
Performance

Minimal timeout to compute a given number of queries

19 / 23

Outline

1 Theoretical background

2 Architecture & Usage

3 Performance

4 Reduction tools

5 Perspectives

20 / 23

Reduce & Shrink – Our reduction tools
Reduction tools

Reduce
https://projects.laas.fr/tina

Available in the Tina Toolbox
Since version 3.7 (January 20, 2022)

Used in Tina and SMPT in the MCC

Shrink
https://github.com/Fomys/pnets

Freely available under MIT license

Based on the pnets library

21 / 23

https://projects.laas.fr/tina
https://github.com/Fomys/pnets

Reduce & Shrink – Our reduction tools
Reduction tools

Reduce
https://projects.laas.fr/tina

Available in the Tina Toolbox
Since version 3.7 (January 20, 2022)

Used in Tina and SMPT in the MCC

Shrink
https://github.com/Fomys/pnets

Freely available under MIT license

Based on the pnets library

21 / 23

https://projects.laas.fr/tina
https://github.com/Fomys/pnets

Outline

1 Theoretical background

2 Architecture & Usage

3 Performance

4 Reduction tools

5 Perspectives

22 / 23

Perspectives

Generalized Mutual Exclusion Constraints∑
p∈P wp.m(p) ⩽ k , with w1, . . . ,wn, k constants in Z

Explore new reduction rules

Still a lot of work to be done to compute polyhedral
reductions, and to apply them on useful and complex

problems!

23 / 23

Perspectives

Generalized Mutual Exclusion Constraints∑
p∈P wp.m(p) ⩽ k , with w1, . . . ,wn, k constants in Z

Explore new reduction rules

Still a lot of work to be done to compute polyhedral
reductions, and to apply them on useful and complex

problems!

23 / 23

Perspectives

Generalized Mutual Exclusion Constraints∑
p∈P wp.m(p) ⩽ k , with w1, . . . ,wn, k constants in Z

Explore new reduction rules

Still a lot of work to be done to compute polyhedral
reductions, and to apply them on useful and complex

problems!

23 / 23

	Theoretical background
	Architecture & Usage
	Performance
	Reduction tools
	Perspectives

