Kong: a Tool to Squash Concurrent Places (and more...)

Nicolas Amat, Louis Chauvet

LAAS-CNRS

Petri Nets, June 222022

What is Kong?

Introduction

- A tool for reachability problems using polyhedral reductions

What is Kong?

Introduction

- A tool for reachability problems using polyhedral reductions

Concurrent places problem: enumerate all pairs of places that can be marked together in some reachable marking Marking reachability: is a given marking reachable?

What is Kong?

Introduction

- A tool for reachability problems using polyhedral reductions

Concurrent places problem: enumerate all pairs of places that can be marked together in some reachable marking

Marking reachability: is a given marking reachable?

- Freely available under the GPLv3 license github.com/nicolasAmat/Kong

Outline

(1) Theoretical background
(2) Architecture \& Usage
(3) Performance

4 Reduction tools
(5) Perspectives

Polyhedral reduction

Theoretical background

Correspondence between the set of reachable markings "modulo" the linear equations E

Polyhedral reduction

Theoretical background

$$
\underbrace{\left(N_{1}, m_{1}\right)}_{\text {initial net }} \underbrace{\triangleright_{E}}_{\text {linear system }} \underbrace{\left(N_{2}, m_{2}\right)}_{\text {reduced net }}
$$

Correspondence between the set of reachable markings "modulo" the linear equations E

Polyhedral reduction

Theoretical background

Theorem (Reachability preservation)

Assume $m_{1}^{\prime}, m_{2}^{\prime}, E$ is satisfiable then m_{2}^{\prime} is reachable in $\left(N_{2}, m_{2}\right)$ if and only if m_{1}^{\prime} is reachable in $\left(N_{1}, m_{1}\right)$.

Token Flow Graph

Theoretical background

A Token Flow Graph is a DAG that captures the specific structure of reduction equations

$$
E=\left(p_{5}=p_{4}\right) \wedge\left(a_{1}=p_{2}+p_{1}\right) \wedge\left(a_{2}=p_{4}+p_{3}\right) \wedge\left(a_{1}=a_{2}\right)
$$

Outline

(1) Theoretical background
(2) Architecture \& Usage
(3) Performance

4 Reduction tools
(5) Perspectives

- Basically a front-end to accelerate the computation of reachability problems
- Divided into three subcommands: reach, conc and dead
- Input formats: .pnml, .net and .nupn

reach subcommand - Basic usage

Architecture \& Usage

\$> ./kong.py reach model.pnml -m marking

Textual description of the marking: "p1 p4 p5" (assume non-specified places do not contain tokens)

reach subcommand - Basic usage

Architecture \& Usage

\$> ./kong.py reach model.pnml -m marking
REACHABLE

Textual description of the marking: "p1 p4 p5" (assume non-specified places do not contain tokens)

reach subcommand - Reduction options

Architecture \& Usage

--show-equations
\# System of equations
\# R |- p5 = p4
\# A $\mid-\mathrm{a} 1=\mathrm{p} 2+\mathrm{p} 1$
\# A |- a2 $=\mathrm{p} 4+\mathrm{p} 3$
\# R |- a1 = a2
--save-reduced-net

reach subcommand - Marking projection

Architecture \& Usage

--draw-graph

reach subcommand - Marking projection

Architecture \& Usage

$$
p_{0}=0 \wedge p_{1}=1 \wedge p_{2}=0 \wedge p_{3}=0 \wedge p_{4}=1 \wedge p_{5}=1 \wedge p_{6}=0
$$

reach subcommand - Marking projection Architecture \& Usage

reach subcommand - Marking projection

 Architecture \& Usage
--projected-marking:

$$
p_{0}=0 \wedge a_{2}=1 \wedge p_{6}=0
$$

reach subcommand - Marking projection

Architecture \& Usage

$$
p_{0}=0 \wedge p_{1}=1 \wedge p_{2}=0 \wedge p_{3}=0 \wedge p_{4}=0 \wedge p_{5}=1 \wedge p_{6}=0
$$

reach subcommand - Marking projection

Architecture \& Usage

$$
p_{0}=0 \wedge p_{1}=1 \wedge p_{2}=0 \wedge p_{3}=0 \wedge p_{4}=0 \wedge p_{5}=1 \wedge p_{6}=0
$$

reach subcommand - Marking projection

Architecture \& Usage

$$
p_{0}=0 \wedge p_{1}=1 \wedge p_{2}=0 \wedge p_{3}=0 \wedge p_{4}=0 \wedge p_{5}=1 \wedge p_{6}=0
$$

reach subcommand - Marking projection

Architecture \& Usage

$$
p_{0}=0 \wedge p_{1}=1 \wedge p_{2}=0 \wedge p_{3}=0 \wedge p_{4}=0 \wedge p_{5}=1 \wedge p_{6}=0
$$

No projection! And so, the marking is trivially unreachable.

reach subcommand - Overview

Architecture \& Usage

conc subcommand - Basic usage

Architecture \& Usage

\$> ./kong.py conc model.pnml --place-names

conc subcommand - Computation options

Architecture \& Usage

--show-reduced-matrix

$$
\begin{aligned}
& \text { \# Reduced concurrency matrix } \\
& \text { \# a2 1 } \\
& \text { \# p0 } 01
\end{aligned}
$$

conc subcommand - Overview

Architecture \& Usage

Outline

(1) Theoretical background
(2) Architecture \& Usage
(3) Performance

4 Reduction tools
(5) Perspectives

Benchmark suite

Performance

Models from the Model Checking Contest (MCC)

Concurrent places

- 424 instances with reduction opportunities (out of 562 safe)

Marking reachability

- Selected of 426 instances (out of 1411)
- Generated 5 reachable markings as queries using a "random walk"

Benchmark suite

Performance

Models from the Model Checking Contest (MCC)

Concurrent places

- 424 instances with reduction opportunities (out of 562 safe)

Marking reachability

- Selected of 426 instances (out of 1411)
- Generated 5 reachable markings as queries using a "random walk"

We compare: CaEsAr.BDD and Sift alone, on the initial net, and Kong + Reduce + Caesar.BDD or Sift

Benchmark suite

Performance

Models from the Model Checking Contest (MCC)

Concurrent places

- 424 instances with reduction opportunities (out of 562 safe)

Marking reachability

- Selected of 426 instances (out of 1411)
- Generated 5 reachable markings as queries using a "random walk"

We compare: Caesar. BDD and Sift alone, on the initial net, and Kong + Reduce + Caesar.BDD or Sift

All benchmark scripts are available online!

Concurrent places

Performance

Minimal timeout to compute a given number of concurrency matrices

Reachability queries

Performance

Minimal timeout to compute a given number of queries

Outline

(1) Theoretical background
(2) Architecture \& Usage
(3) Performance

4 Reduction tools
(5) Perspectives

Reduce \& Shrink - Our reduction tools

Reduction tools

Reduce

https://projects.laas.fr/tina

- Available in the Tina Toolbox

Since version 3.7 (January 20, 2022)

- Used in Tina and SMPT in the MCC

Reduce \& Shrink - Our reduction tools

Reduction tools

Reduce

https://projects.laas.fr/tina

- Available in the Tina Toolbox Since version 3.7 (January 20, 2022)
- Used in Tina and SMPT in the MCC

Shrink

 https://github.com/Fomys/pnets- Freely available under MIT license
- Based on the PNETS library

Outline

(1) Theoretical background
(2) Architecture \& Usage
(3) Performance

4 Reduction tools
(5) Perspectives

Perspectives

- Generalized Mutual Exclusion Constraints

$$
\sum_{p \in P} w_{p} \cdot m(p) \leqslant k, \text { with } w_{1}, \ldots, w_{n}, k \text { constants in } \mathbb{Z}
$$

Perspectives

- Generalized Mutual Exclusion Constraints

$$
\sum_{p \in P} w_{p} \cdot m(p) \leqslant k, \text { with } w_{1}, \ldots, w_{n}, k \text { constants in } \mathbb{Z}
$$

- Explore new reduction rules

Perspectives

- Generalized Mutual Exclusion Constraints

$$
\sum_{p \in P} w_{p} \cdot m(p) \leqslant k, \text { with } w_{1}, \ldots, w_{n}, k \text { constants in } \mathbb{Z}
$$

- Explore new reduction rules

Still a lot of work to be done to compute polyhedral reductions, and to apply them on useful and complex problems!

