On the Combination of Polyhedral Abstraction and SMT－based Model Checking for Petri nets

Nicolas Amat，Bernard Berthomieu，Silvano Dal Zilio

LAAS－CNRS，Université de Toulouse，CNRS，Toulouse，France

Petri Nets，June 242021

Motivations

Introduction

- Many results based on linear algebra and linear programming techniques [Murata, 1989] [Silva et al., 1996]
- Potentially reachable markings
- Place invariants
- ...

Motivations

Introduction

- Many results based on linear algebra and linear programming techniques [Murata, 1989] [Silva et al., 1996]
- Potentially reachable markings
- Place invariants
- ...
- Structural reductions [Berthelot, 1987]

Motivations

- Many results based on linear algebra and linear programming techniques [Murata, 1989] [Silva et al., 1996]
- Potentially reachable markings
- Place invariants
- ...
- Structural reductions [Berthelot, 1987]
- And 30 years after... [Berthomieu et al., 2019] Structural reductions with linear equations

Does it fit well with SMT-based methods?

Reachability Properties Verification

Introduction

A property ϕ is an invariant if for all reachable markings m in $R\left(N, m_{0}\right)$, m satisfies ϕ, denoted $m \models \phi$

$$
\phi \equiv\left(p_{1}+p_{2} \leqslant 5\right) \wedge\left(p_{4}=p_{5}\right)
$$

Reachability Properties Verification

Introduction

We say that ϕ is reachable when there exists $m \in R\left(N, m_{0}\right)$ such that $m \models \phi$

$$
\phi \equiv\left(p_{1} \geqslant 1\right) \wedge\left(p_{6} \leqslant 2\right)
$$

Reachability Properties Verification

Introduction

- A marking is formula (cube) with variables in \vec{x} that is only "satisfiable at marking m ": $\underline{m}(\vec{x}) \equiv \bigwedge_{i \in 1 . . n}\left(x_{i}=m\left(p_{i}\right)\right)$

$$
\underline{m_{0}}(\vec{p}) \equiv p_{0}=5 \wedge p_{1}=0 \wedge p_{2}=0 \wedge p_{3}=0 \wedge p_{4}=0 \wedge p_{5}=0 \wedge p_{6}=4
$$

Reachability Properties Verification

Introduction

- A marking is formula (cube) with variables in \vec{x} that is only "satisfiable at marking m ": $\underline{m}(\vec{x}) \equiv \bigwedge_{i \in 1 . . n}\left(x_{i}=m\left(p_{i}\right)\right)$

$$
\underline{m_{0}}(\vec{p}) \equiv p_{0}=5 \wedge p_{1}=0 \wedge p_{2}=0 \wedge p_{3}=0 \wedge p_{4}=0 \wedge p_{5}=0 \wedge p_{6}=4
$$

- ϕ reachable iff $\exists m \in R\left(N, m_{0}\right)$ s.t. $\phi(\vec{x}) \wedge \underline{m}(\vec{x}) S A T$

Reachability Properties Verification

Introduction

- A marking is formula (cube) with variables in \vec{x} that is only "satisfiable at marking $m ": \underline{m}(\vec{x}) \equiv \bigwedge_{i \in 1 . . n}\left(x_{i}=m\left(p_{i}\right)\right)$

$$
\underline{m_{0}}(\vec{p}) \equiv p_{0}=5 \wedge p_{1}=0 \wedge p_{2}=0 \wedge p_{3}=0 \wedge p_{4}=0 \wedge p_{5}=0 \wedge p_{6}=4
$$

- ϕ reachable iff $\exists m \in R\left(N, m_{0}\right)$ s.t. $\phi(\vec{x}) \wedge \underline{m}(\vec{x}) S A T$
- ϕ invariant iff $\forall m \in R\left(N, m_{0}\right)$ we have $\neg \phi(\vec{x}) \wedge \underline{m}(\vec{x})$ UNSAT

Properties of Interest

 Introduction- Coverability: $\operatorname{COVER}(p, k) \equiv m(p) \geq k$
- Reachability: $\operatorname{REACH}(p) \equiv m(p) \geq 1$
- Quasi-liveness: $\operatorname{LIVE}(t) \equiv \bigwedge_{p \in \bullet} \operatorname{COVER}(p, \operatorname{pre}(t, p))$
- Deadlock: DEAD $\equiv \bigwedge_{t \in T} \neg \operatorname{LIVE}(t)$

Satisfiability Modulo Theory

Introduction

- QF-LIA theory
- Unbounded Petri nets
- Perfect fitting with properties of interest

Nets Reductions

Introduction

Net reduction example, with equation $E: a=x+y$

Relation between state-spaces

Polyhedral Model Checking

Introduction

36 states

6 states

State-space abstraction by a "polyhedral approach"

Satisfiability Modulo Theory

Introduction

- QF-LIA theory
- Unbounded Petri nets
- Perfect fitting with properties of interest
+ Perfect fitting with reduction equations

On the Combination of Polyhedral Abstraction and SMT-based Model Checking for Petri nets

Net Reduction Example: Step 1

Net Reductions Formalization

Rule: RED

Reduction Rules: Redundant (RED)

Formalization of Net Reductions

Condition: $K>N$

N_{2}

Equation:
$z=y+K-N$

Net Reduction Example: Step 2

Net Reductions Formalization

Rule: CONCAT

Reduction Rules: Concatenate (CONCAT)

Formalization of Net Reductions

Equation: $\quad x=y_{1}+y_{2}$

Net Reduction Example: Step 3

Net Reductions Formalization

Rule: RED

Structure of the System of Equations E

Net Reductions Formalization

- A marking m can be associated to system of equations \underline{m} defined as, $p_{1}=m\left(p_{1}\right), \ldots, p_{k}=m\left(p_{k}\right)$ where $P=\left\{p_{1}, \ldots, p_{k}\right\}$

Structure of the System of Equations E

Net Reductions Formalization

- A marking m can be associated to system of equations \underline{m} defined as, $p_{1}=m\left(p_{1}\right), \ldots, p_{k}=m\left(p_{k}\right)$ where $P=\left\{p_{1}, \ldots, p_{k}\right\}$
- E is satisfiable for marking m if the system E, \underline{m} has solutions

Structure of the System of Equations E

Net Reductions Formalization

- A marking m can be associated to system of equations \underline{m} defined as, $p_{1}=m\left(p_{1}\right), \ldots, p_{k}=m\left(p_{k}\right)$ where $P=\left\{p_{1}, \ldots, p_{k}\right\}$
- E is satisfiable for marking m if the system E, \underline{m} has solutions
- Two markings m_{1} and m_{2} are compatible when $m_{1}(p)=m_{2}(p)$ for all p in $P_{1} \cap P_{2}$
In that case we denote: $\left(m_{1} \uplus m_{2}\right)(p)= \begin{cases}m_{1}(p) & \text { if } p \in P_{1} \\ m_{2}(p) & \text { if } p \in P_{2}\end{cases}$

E-Abstraction Equivalence

Net Reductions Formalization

Definition (E-abstraction)

$\left(N_{1}, m_{1}\right) \sqsupseteq_{E}\left(N_{2}, m_{2}\right)$ iff
(A1) initial markings are compatible with E, meaning $m_{1} \uplus m_{2} \models E$
(A2) for all observation sequences $\sigma \in \Sigma^{\star}$ such that $\left(N_{1}, m_{1}\right) \stackrel{\sigma}{\Rightarrow}\left(N_{1}, m_{1}^{\prime}\right)$ - there is at least one marking $m_{2}^{\prime} \in R\left(N_{2}, m_{2}\right)$ such that $m_{1}^{\prime} \uplus m_{2}^{\prime} \models E$ - for all markings m_{2}^{\prime} we have that $m_{1}^{\prime} \uplus m_{2}^{\prime} \models E$ implies $\left(N_{2}, m_{2}\right) \stackrel{\sigma}{\Rightarrow}\left(N_{2}, m_{2}^{\prime}\right)$

E-Abstraction Equivalence

Net Reductions Formalization

Definition (E-abstraction)

$\left(N_{1}, m_{1}\right) \sqsupseteq_{E}\left(N_{2}, m_{2}\right)$ iff
(A1) initial markings are compatible with E, meaning $m_{1} \uplus m_{2} \models E$
(A2) for all observation sequences $\sigma \in \Sigma^{\star}$ such that $\left(N_{1}, m_{1}\right) \stackrel{\sigma}{\Rightarrow}\left(N_{1}, m_{1}^{\prime}\right)$ - there is at least one marking $m_{2}^{\prime} \in R\left(N_{2}, m_{2}\right)$ such that $m_{1}^{\prime} \uplus m_{2}^{\prime} \models E$ - for all markings m_{2}^{\prime} we have that $m_{1}^{\prime} \uplus m_{2}^{\prime} \models E$ implies $\left(N_{2}, m_{2}\right) \stackrel{\sigma}{\Rightarrow}\left(N_{2}, m_{2}^{\prime}\right)$
E-abstraction equivalence
$\left(N_{1}, m_{1}\right) \triangleright_{E}\left(N_{2}, m_{2}\right)$ iff $\left(N_{1}, m_{1}\right) \sqsupseteq_{E}\left(N_{2}, m_{2}\right)$ and $\left(N_{2}, m_{2}\right) \sqsupseteq_{E}\left(N_{1}, m_{1}\right)$

E-Abstraction Equivalence

Net Reductions Formalization

Composition Laws
 Net Reductions Formalization

Axioms: Reduction Rules (RED, CONCAT, etc.)

Composition Laws

Net Reductions Formalization

Axioms: Reduction Rules (RED, CONCAT, etc.)

Laws:

- Composability
- Transitivity
- Relabeling

On the Combination of Polyhedral Abstraction and SMT-based Model Checking for Petri nets

Combination with Polyhedral Abstractions

SMT-based Model Checking

- Is F_{1} an invariant on $\left(N_{1}, m_{1}\right)$?

Combination with Polyhedral Abstractions

 SMT-based Model Checking- Is F_{1} an invariant on $\left(N_{1}, m_{1}\right)$?

Definition (E-transform Formula)
Formula $F_{2}(\vec{y}) \triangleq \tilde{E}(\vec{x}, \vec{y}) \wedge F_{1}(\vec{x})$ is the E-transform of F_{1}

Combination with Polyhedral Abstractions

 SMT-based Model Checking- Is F_{1} an invariant on $\left(N_{1}, m_{1}\right)$?

Definition (E-transform Formula)

Formula $F_{2}(\vec{y}) \triangleq \tilde{E}(\vec{x}, \vec{y}) \wedge F_{1}(\vec{x})$ is the E-transform of F_{1}

- Is the E-transform formula F_{2} an invariant on $\left(N_{2}, m_{2}\right)$?

Fundamental Results on E-transform Formulas

SMT-based Model Checking

> Theorem (Invariant Conservation)
> F_{1} is an invariant on N_{1} if and only if its E-tranform formula is an invariant on N_{2}

Theorem (Reachability Conservation)

F_{1} is reachable in N_{1} if and only if its E-tranform formula is reachable in N_{2}

SMPT: Another Model-Checker

Tool Overview

［r nicolasAmat／SMPT

```
& Notifications & Star 3
```

〈＞Code
（1）Issues
\＄\％Pull requests
© Actions
四 Projects
\square Wiki
（1）Security
$1 \sim$ Insights

```
& paper *
：\(\equiv\) README．md
\＆paper
```


Add file＊
\downarrow Code ：
About

Ad fre－
e SM（P／）T－Satisfiability Modulo Petri Net

SMPT is an SMT－based model－ checker that takes advantage of nets reduction．

linear－algebra reachability
abstraction model－checking

petri－nets smt
model－checker sat
reductions reachability－analysis
structural－reductions
smt－solving
Readme
区IS GPL－3．0 License

SMT-based Algorithms

- Bounded Model Checking (BMC): counterexample finder
- Property Directed Reachability (PDR): invariant prover

Experimental Results

Prevalence of Reductions over the MCC Instances

Experimental Results

Computation Time

Experimental Results

Computation time with (y-axis) vs without (x-axis) reduction (s)

Reduction ratio $\in[0.5,1[$

Computation Time

Experimental Results

Computation time with (y-axis) vs without (x-axis) reduction (s)

Reduction ratio $\in] 0,0.25[$

A Look at Concrete Instances

Experimental Results

Instance
ARMCacheCoherence
State Space
$3.206 \mathrm{e}+8$
Red Ratio
$\mathbb{E}_{\text {red }}(\theta)$
$\mathbb{E}_{\overline{\text { red }}}(\theta)$

Reduction ratio $\in] 0,0.25[$

A Look at Concrete Instances

Experimental Results

Instance

State Space Red Ratio \# Props with red \# Props without red

AirplaneLD-1000 ?
99\%
14

Reduction ratio $\in[0.5,1[$

Conclusion and Perspectives

Conclusion

- New promising framework for the use of reductions with SMT-based methods
- New equivalence relation: E-abstraction equivalence
- Contributions for SMT-based algorithms

Perspectives

- New release of SMPT is coming
- Adaptation of PDR for Reachability
- Automated proof of E-abstraction equivalences
- Accelerating the Computation of Dead and Concurrent Places using Reductions [SPIN2021]
- Participated to the MCC'2021

Thank you for your attention!

