On the Combination of Polyhedral Abstraction and SMT-based Model Checking for Petri nets

Nicolas Amat, Bernard Berthomieu, Silvano Dal Zilio

LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

Petri Nets, June 24 2021

・ロト ・四ト ・ヨト ・ヨー

590

- Many results based on **linear algebra** and linear programming techniques [Murata, 1989] [Silva et al., 1996]
 - Potentially reachable markings
 - Place invariants
 - ...

-> -< ∃ >

- Many results based on **linear algebra** and linear programming techniques [Murata, 1989] [Silva et al., 1996]
 - Potentially reachable markings
 - Place invariants
 - ...
- Structural reductions [Berthelot, 1987]

- Many results based on **linear algebra** and linear programming techniques [Murata, 1989] [Silva et al., 1996]
 - Potentially reachable markings
 - Place invariants
 - ...
- Structural reductions [Berthelot, 1987]
- And 30 years after... [Berthomieu et al., 2019] Structural reductions with linear equations

Does it fit well with SMT-based methods?

Introduction

A property ϕ is an **invariant** if for all reachable markings *m* in $R(N, m_0)$, *m* satisfies ϕ , denoted $m \models \phi$

$$\phi \equiv (p_1 + p_2 \leqslant 5) \land (p_4 = p_5)$$

Introduction

We say that ϕ is **reachable** when there exists $m \in R(N, m_0)$ such that $m \models \phi$

$$\phi \equiv (p_1 \geqslant 1) \land (p_6 \leqslant 2)$$

Reachability Properties Verification

Introduction

• A marking is formula (**cube**) with variables in \vec{x} that is only "satisfiable at marking m": $\underline{m}(\vec{x}) \equiv \bigwedge_{i \in 1..n} (x_i = m(p_i))$

 $\underline{m_0}(\vec{p}) \equiv p_0 = 5 \land p_1 = 0 \land p_2 = 0 \land p_3 = 0 \land p_4 = 0 \land p_5 = 0 \land p_6 = 4$

Reachability Properties Verification

Introduction

• A marking is formula (**cube**) with variables in \vec{x} that is only "satisfiable at marking m": $\underline{m}(\vec{x}) \equiv \bigwedge_{i \in 1..n} (x_i = m(p_i))$

 $\underline{m_0}(\vec{p}) \equiv p_0 = 5 \land p_1 = 0 \land p_2 = 0 \land p_3 = 0 \land p_4 = 0 \land p_5 = 0 \land p_6 = 4$

• ϕ reachable iff $\exists m \in R(N, m_0)$ s.t. $\phi(\vec{x}) \land \underline{m}(\vec{x})$ SAT

Reachability Properties Verification

Introduction

• A marking is formula (**cube**) with variables in \vec{x} that is only "satisfiable at marking m": $\underline{m}(\vec{x}) \equiv \bigwedge_{i \in 1..n} (x_i = m(p_i))$

 $\underline{m_0}(\vec{p}) \equiv p_0 = 5 \land p_1 = 0 \land p_2 = 0 \land p_3 = 0 \land p_4 = 0 \land p_5 = 0 \land p_6 = 4$

- ϕ reachable iff $\exists m \in R(N, m_0)$ s.t. $\phi(\vec{x}) \land \underline{m}(\vec{x})$ SAT
- ϕ invariant iff $\forall m \in R(N, m_0)$ we have $\neg \phi(\vec{x}) \land \underline{m}(\vec{x})$ UNSAT

- Coverability: COVER $(p, k) \equiv m(p) \ge k$
- Reachability: $\operatorname{REACH}(p) \equiv m(p) \geq 1$
- Quasi-liveness: LIVE(t) $\equiv \bigwedge_{p \in \bullet_t} \text{COVER}(p, \text{pre}(t, p))$
- **Deadlock**: DEAD $\equiv \bigwedge_{t \in T} \neg \text{LIVE}(t)$

イロト 不得 トイヨト イヨト

Satisfiability Modulo Theory

Introduction

• QF-LIA theory

- Unbounded Petri nets
- Perfect fitting with properties of interest

▶ ∢ ∃ ▶

Nets Reductions

Introduction

Net reduction example, we equation E : a = x + y

Relation between state-spaces

Polyhedral Model Checking

Introduction

State-space abstraction by a "polyhedral approach"

Nicola	ıs Am	at
--------	-------	----

Satisfiability Modulo Theory

Introduction

- QF-LIA theory
 - Unbounded Petri nets
 - Perfect fitting with properties of interest
 - + Perfect fitting with reduction equations

On the Combination of Polyhedral Abstraction and SMT-based Model Checking for Petri nets

Net Reduction Example: Step 1

Net Reductions Formalization

Rule: RED

臣

3

Reduction Rules: Redundant (RED)

Formalization of Net Reductions

Condition: K > N N_1 N_2 y Ν

Equation: z = y + K - N

Nicolas A	mat
-----------	-----

Petri Nets 2021

イロト イポト イヨト イヨト

Net Reduction Example: Step 2

Net Reductions Formalization

Rule: CONCAT

 $E' \triangleq (a_1 = p_1 + p_2) \land (a_2 = p_3 + p_4)$

Reduction Rules: Concatenate (CONCAT)

Formalization of Net Reductions

Equation: $x = y_1 + y_2$

Petri Nets 202

臣

イロト イポト イヨト イヨト

Net Reduction Example: Step 3

Net Reductions Formalization

프 > 프

Structure of the System of Equations E

Net Reductions Formalization

• A marking *m* can be associated to system of equations \underline{m} defined as, $p_1 = m(p_1), \ldots, p_k = m(p_k)$ where $P = \{p_1, \ldots, p_k\}$

Structure of the System of Equations E

Net Reductions Formalization

- A marking *m* can be associated to **system of equations** \underline{m} defined as, $p_1 = m(p_1), \ldots, p_k = m(p_k)$ where $P = \{p_1, \ldots, p_k\}$
- *E* is **satisfiable** for marking *m* if the system E, \underline{m} has solutions

Structure of the System of Equations E

Net Reductions Formalization

- A marking *m* can be associated to system of equations \underline{m} defined as, $p_1 = m(p_1), \ldots, p_k = m(p_k)$ where $P = \{p_1, \ldots, p_k\}$
- *E* is **satisfiable** for marking *m* if the system E, \underline{m} has solutions
- Two markings m_1 and m_2 are **compatible** when $m_1(p) = m_2(p)$ for all p in $P_1 \cap P_2$

In that case we denote: $(m_1 \uplus m_2)(p) = \begin{cases} m_1(p) & \text{if } p \in P_1 \\ m_2(p) & \text{if } p \in P_2 \end{cases}$

Net Reductions Formalization

Definition (*E*-abstraction)

 $(N_1, m_1) \sqsupseteq_E (N_2, m_2)$ iff

(A1) initial markings are compatible with *E*, meaning $m_1 \uplus m_2 \models E$

(A2) for all observation sequences $\sigma \in \Sigma^{\star}$ such that $(N_1, m_1) \stackrel{\sigma}{\Rightarrow} (N_1, m_1')$

ullet there is at least one marking $m_2'\in R(N_2,m_2)$ such that $m_1'\uplus m_2'\models E$

• for all markings m'_2 we have that $m'_1 \uplus m'_2 \models E$ implies $(N_2, m_2) \stackrel{\sigma}{\Rightarrow} (N_2, m'_2)$

Net Reductions Formalization

Definition (*E*-abstraction)

 $(N_1, m_1) \sqsupseteq_E (N_2, m_2)$ iff

(A1) initial markings are compatible with *E*, meaning $m_1 \uplus m_2 \models E$

(A2) for all observation sequences $\sigma \in \Sigma^{\star}$ such that $(N_1, m_1) \stackrel{\sigma}{\Rightarrow} (N_1, m_1')$

•there is at least one marking $m_2' \in R(N_2,m_2)$ such that $m_1' \uplus m_2' \models E$

• for all markings m'_2 we have that $m'_1 \uplus m'_2 \models E$ implies $(N_2, m_2) \stackrel{\sigma}{\Rightarrow} (N_2, m'_2)$

E-abstraction equivalence

$$(N_1, m_1) \triangleright_E (N_2, m_2)$$
 iff $(N_1, m_1) \sqsupseteq_E (N_2, m_2)$ and $(N_2, m_2) \sqsupseteq_E (N_1, m_1)$

E-Abstraction Equivalence

Net Reductions Formalization

臣

Net Reductions Formalization

Axioms: Reduction Rules (RED, CONCAT, etc.)

Axioms: Reduction Rules (RED, CONCAT, etc.)

Laws:

- Composability
- Transitivity
- Relabeling

▶ < ∃ ▶

On the Combination of Polyhedral Abstraction and SMT-based Model Checking for Petri nets

Combination with Polyhedral Abstractions

SMT-based Model Checking

• Is F_1 an invariant on (N_1, m_1) ?

Combination with Polyhedral Abstractions

SMT-based Model Checking

• Is F_1 an invariant on (N_1, m_1) ?

Definition (E-transform Formula)

Formula $F_2(\vec{y}) \triangleq \tilde{E}(\vec{x}, \vec{y}) \land F_1(\vec{x})$ is the *E*-transform of F_1

Combination with Polyhedral Abstractions

SMT-based Model Checking

• Is F_1 an invariant on (N_1, m_1) ?

Definition (*E*-transform Formula)

Formula $F_2(\vec{y}) \triangleq \tilde{E}(\vec{x}, \vec{y}) \wedge F_1(\vec{x})$ is the *E*-transform of F_1

• Is the *E*-transform formula F_2 an invariant on (N_2, m_2) ?

Fundamental Results on E-transform Formulas

SMT-based Model Checking

Theorem (Invariant Conservation)

 ${\it F_1}$ is an invariant on N_1 if and only if its E-tranform formula is an invariant on N_2

Theorem (Reachability Conservation)

 F_1 is reachable in N_1 if and only if its E-tranform formula is reachable in N_2

SMPT: Another Model-Checker

		•	
	r c l	\m	171
.010	15 /	~	Iau

臣

▶ ∢ ∃ ▶

🖟 ni	colasAmat	/ SMP	г						D Notifications		양 Fork 0
<> (Code 🕛 Is		រ៉េ Pull requ			🛄 Proje		🛱 Wiki			
	paper 👻				Go	to file	Add f	ile •	⊻ Code -	About	
	README.md									SMPT is an SM checker that t of nets reduct	IT-based model- akes advantage ion.
d S	5M(P/)	T - S	atisfi	abili	ty Mo	dulo	Pet	ri Ne	et		
							8a				
	ad88888ba	88b	d88	d8'	88888888ba	d8	`8b	888888888	888		
	d8" "8b	888b	d888	d8'	88 "8b	,8P'	`8b	88			eachability-analysis
	Y8,	88'8b	d8'88	d8 .	88 ,8P	d8"	`8b	88			
	roaaaaa,	88 80	08'88 48'88	88	88"""""""	,8P	88	88			
	`8b	88 .8	3b d8' 88	Y8.	88 .	8P'	.8P	88		smt-solving	
	Y8a a8P "Y888888P"	88 88	888' 88	Y8, Y8.	88 d8 88 8P'		,8P	88 88		🛱 Readme	
				"8			8"			ৰ⊉ GPL-3.0 Lic	ense

1

◆□▶ ◆□▶ ◆三▶ ◆三▶

- Bounded Model Checking (BMC): counterexample finder
- Property Directed Reachability (PDR): invariant prover

Experimental Results

	•		•		
- 13 1	0.0	20	~	-	-
1.1	16.63	as.	н		a 1
					_

臣

∃ ▶ ∢

Prevalence of Reductions over the MCC Instances

Experimental Results

臣

Computation time with (y-axis) vs without (x-axis) reduction (s)

Computation time with (y-axis) vs without (x-axis) reduction (s)

Petri Nets 2021

A Look at Concrete Instances

Experimental Results

Reduction	ratio	\in	0,	0.25

Instance	ARMCacheCoherence
State Space	3.206e+8
Red Ratio	17%
$\mathbb{E}_{red}(\theta)$	1 s
$\mathbb{E}_{red}(\theta)$	20 s

臣

A Look at Concrete Instances

Experimental Results

Reduction	$ratio \in$	[0.5,]	1[
-----------	-------------	---------	----

Instance	AirplaneLD-1000
State Space	?
Red Ratio	99%
# Props with red	14
# Props without red	0

E

Conclusion and Perspectives

		-
	e //	maat
JUIA	3 /	u la l

臣

- New promising framework for the use of reductions with SMT-based methods
- New equivalence relation: *E-abstraction equivalence*
- Contributions for SMT-based algorithms

- New release of SMPT is coming
 - Adaptation of PDR for Reachability
- Automated proof of *E*-abstraction equivalences
- Accelerating the Computation of Dead and Concurrent Places using Reductions [SPIN2021]
- Participated to the MCC'2021

Thank you for your attention!

		•	
	r c l	\m	171
.010	15 /	~	Iau

< 口 > < 同

E

.∃ →